Gespeichert in:
Weitere beteiligte Personen: | , , |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2019
|
Schriftenreihe: | London Mathematical Society lecture note series
454 |
Links: | https://doi.org/10.1017/9781108559065 |
Zusammenfassung: | Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity. |
Umfang: | 1 Online-Ressource (x, 231 Seiten) |
ISBN: | 9781108559065 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108559065 | ||
003 | UkCbUP | ||
005 | 20190630214753.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 170829s2019||||enk o ||1 0|eng|d | ||
020 | |a 9781108559065 | ||
245 | 0 | 0 | |a Beyond hyperbolicity |c edited by Mark Hagen, Richard Webb, Henry Wilton |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2019 | |
300 | |a 1 Online-Ressource (x, 231 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society lecture note series |v 454 | |
520 | |a Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity. | ||
700 | 1 | |a Hagen, Mark |d 1987- | |
700 | 1 | |a Webb, Richard |d 1988- | |
700 | 1 | |a Wilton, Henry | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108447294 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108559065 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108559065 |
---|---|
_version_ | 1832177779951534080 |
adam_text | |
any_adam_object | |
author2 | Hagen, Mark 1987- Webb, Richard 1988- Wilton, Henry |
author2_role | |
author2_variant | m h mh r w rw h w hw |
author_facet | Hagen, Mark 1987- Webb, Richard 1988- Wilton, Henry |
author_sort | Hagen, Mark 1987- |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01844nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108559065</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20190630214753.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">170829s2019||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108559065</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Beyond hyperbolicity</subfield><subfield code="c">edited by Mark Hagen, Richard Webb, Henry Wilton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 231 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">454</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagen, Mark</subfield><subfield code="d">1987-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Webb, Richard</subfield><subfield code="d">1988-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilton, Henry</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108447294</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108559065</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108559065 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:31Z |
institution | BVB |
isbn | 9781108559065 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (x, 231 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Beyond hyperbolicity edited by Mark Hagen, Richard Webb, Henry Wilton Cambridge Cambridge University Press 2019 1 Online-Ressource (x, 231 Seiten) txt c cr London Mathematical Society lecture note series 454 Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity. Hagen, Mark 1987- Webb, Richard 1988- Wilton, Henry Erscheint auch als Druck-Ausgabe 9781108447294 |
spellingShingle | Beyond hyperbolicity |
title | Beyond hyperbolicity |
title_auth | Beyond hyperbolicity |
title_exact_search | Beyond hyperbolicity |
title_full | Beyond hyperbolicity edited by Mark Hagen, Richard Webb, Henry Wilton |
title_fullStr | Beyond hyperbolicity edited by Mark Hagen, Richard Webb, Henry Wilton |
title_full_unstemmed | Beyond hyperbolicity edited by Mark Hagen, Richard Webb, Henry Wilton |
title_short | Beyond hyperbolicity |
title_sort | beyond hyperbolicity |
work_keys_str_mv | AT hagenmark beyondhyperbolicity AT webbrichard beyondhyperbolicity AT wiltonhenry beyondhyperbolicity |