Gespeichert in:
Beteilige Person: | |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | Australian Mathematical Society Lecture Series
26 |
Links: | https://doi.org/10.1017/9781108277457 |
Zusammenfassung: | Enumerative combinatorics, in its algebraic and analytic forms, is vital to many areas of mathematics, from model theory to statistical mechanics. This book, which stems from many years' experience of teaching, invites students into the subject and prepares them for more advanced texts. It is suitable as a class text or for individual study. The author provides proofs for many of the theorems to show the range of techniques available, and uses examples to link enumerative combinatorics to other areas of study. The main section of the book introduces the key tools of the subject (generating functions and recurrence relations), which are then used to study the most important combinatorial objects, namely subsets, partitions, and permutations of a set. Later chapters deal with more specialised topics, including permanents, SDRs, group actions and the Redfield-Pólya theory of cycle indices, Möbius inversion, the Tutte polynomial, and species. |
Umfang: | 1 Online-Ressource (xii, 222 Seiten) |
ISBN: | 9781108277457 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108277457 | ||
003 | UkCbUP | ||
005 | 20170712101312.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 170111s2017||||enk o ||1 0|eng|d | ||
020 | |a 9781108277457 | ||
100 | 1 | |a Cameron, Peter J. | |
245 | 1 | 0 | |a Notes on counting |b an introduction to enumerative combinatorics |c Peter J. Cameron |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 Online-Ressource (xii, 222 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Australian Mathematical Society Lecture Series |v 26 | |
520 | |a Enumerative combinatorics, in its algebraic and analytic forms, is vital to many areas of mathematics, from model theory to statistical mechanics. This book, which stems from many years' experience of teaching, invites students into the subject and prepares them for more advanced texts. It is suitable as a class text or for individual study. The author provides proofs for many of the theorems to show the range of techniques available, and uses examples to link enumerative combinatorics to other areas of study. The main section of the book introduces the key tools of the subject (generating functions and recurrence relations), which are then used to study the most important combinatorial objects, namely subsets, partitions, and permutations of a set. Later chapters deal with more specialised topics, including permanents, SDRs, group actions and the Redfield-Pólya theory of cycle indices, Möbius inversion, the Tutte polynomial, and species. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108404952 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108417365 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108277457 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108277457 |
---|---|
_version_ | 1832177784759255041 |
adam_text | |
any_adam_object | |
author | Cameron, Peter J. |
author_facet | Cameron, Peter J. |
author_role | |
author_sort | Cameron, Peter J. |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01796nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108277457</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20170712101312.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">170111s2017||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108277457</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notes on counting</subfield><subfield code="b">an introduction to enumerative combinatorics</subfield><subfield code="c">Peter J. Cameron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 222 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Australian Mathematical Society Lecture Series</subfield><subfield code="v">26</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Enumerative combinatorics, in its algebraic and analytic forms, is vital to many areas of mathematics, from model theory to statistical mechanics. This book, which stems from many years' experience of teaching, invites students into the subject and prepares them for more advanced texts. It is suitable as a class text or for individual study. The author provides proofs for many of the theorems to show the range of techniques available, and uses examples to link enumerative combinatorics to other areas of study. The main section of the book introduces the key tools of the subject (generating functions and recurrence relations), which are then used to study the most important combinatorial objects, namely subsets, partitions, and permutations of a set. Later chapters deal with more specialised topics, including permanents, SDRs, group actions and the Redfield-Pólya theory of cycle indices, Möbius inversion, the Tutte polynomial, and species.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108404952</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108417365</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108277457</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108277457 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:36Z |
institution | BVB |
isbn | 9781108277457 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 222 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Australian Mathematical Society Lecture Series |
spelling | Cameron, Peter J. Notes on counting an introduction to enumerative combinatorics Peter J. Cameron Cambridge Cambridge University Press 2017 1 Online-Ressource (xii, 222 Seiten) txt c cr Australian Mathematical Society Lecture Series 26 Enumerative combinatorics, in its algebraic and analytic forms, is vital to many areas of mathematics, from model theory to statistical mechanics. This book, which stems from many years' experience of teaching, invites students into the subject and prepares them for more advanced texts. It is suitable as a class text or for individual study. The author provides proofs for many of the theorems to show the range of techniques available, and uses examples to link enumerative combinatorics to other areas of study. The main section of the book introduces the key tools of the subject (generating functions and recurrence relations), which are then used to study the most important combinatorial objects, namely subsets, partitions, and permutations of a set. Later chapters deal with more specialised topics, including permanents, SDRs, group actions and the Redfield-Pólya theory of cycle indices, Möbius inversion, the Tutte polynomial, and species. Erscheint auch als Druck-Ausgabe 9781108404952 Erscheint auch als Druck-Ausgabe 9781108417365 |
spellingShingle | Cameron, Peter J. Notes on counting an introduction to enumerative combinatorics |
title | Notes on counting an introduction to enumerative combinatorics |
title_auth | Notes on counting an introduction to enumerative combinatorics |
title_exact_search | Notes on counting an introduction to enumerative combinatorics |
title_full | Notes on counting an introduction to enumerative combinatorics Peter J. Cameron |
title_fullStr | Notes on counting an introduction to enumerative combinatorics Peter J. Cameron |
title_full_unstemmed | Notes on counting an introduction to enumerative combinatorics Peter J. Cameron |
title_short | Notes on counting |
title_sort | notes on counting an introduction to enumerative combinatorics |
title_sub | an introduction to enumerative combinatorics |
work_keys_str_mv | AT cameronpeterj notesoncountinganintroductiontoenumerativecombinatorics |