Random walks and heat kernels on graphs:
This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Po...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schriftenreihe: | London Mathematical Society lecture note series
438 |
Links: | https://doi.org/10.1017/9781107415690 |
Zusammenfassung: | This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincaré inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere. |
Umfang: | 1 Online-Ressource (xi, 226 Seiten) |
ISBN: | 9781107415690 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781107415690 | ||
003 | UkCbUP | ||
005 | 20170324152655.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 130723s2017||||enk o ||1 0|eng|d | ||
020 | |a 9781107415690 | ||
100 | 1 | |a Barlow, M. T. | |
245 | 1 | 0 | |a Random walks and heat kernels on graphs |c Martin T. Barlow, University of British Columbia, Canada |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 Online-Ressource (xi, 226 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society lecture note series |v 438 | |
520 | |a This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincaré inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107674424 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781107415690 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781107415690 |
---|---|
_version_ | 1832177780255621121 |
adam_text | |
any_adam_object | |
author | Barlow, M. T. |
author_facet | Barlow, M. T. |
author_role | |
author_sort | Barlow, M. T. |
author_variant | m t b mt mtb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01744nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781107415690</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20170324152655.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">130723s2017||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107415690</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barlow, M. T.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random walks and heat kernels on graphs</subfield><subfield code="c">Martin T. Barlow, University of British Columbia, Canada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 226 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">438</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincaré inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107674424</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781107415690</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781107415690 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:32Z |
institution | BVB |
isbn | 9781107415690 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 226 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Barlow, M. T. Random walks and heat kernels on graphs Martin T. Barlow, University of British Columbia, Canada Cambridge Cambridge University Press 2017 1 Online-Ressource (xi, 226 Seiten) txt c cr London Mathematical Society lecture note series 438 This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincaré inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere. Erscheint auch als Druck-Ausgabe 9781107674424 |
spellingShingle | Barlow, M. T. Random walks and heat kernels on graphs |
title | Random walks and heat kernels on graphs |
title_auth | Random walks and heat kernels on graphs |
title_exact_search | Random walks and heat kernels on graphs |
title_full | Random walks and heat kernels on graphs Martin T. Barlow, University of British Columbia, Canada |
title_fullStr | Random walks and heat kernels on graphs Martin T. Barlow, University of British Columbia, Canada |
title_full_unstemmed | Random walks and heat kernels on graphs Martin T. Barlow, University of British Columbia, Canada |
title_short | Random walks and heat kernels on graphs |
title_sort | random walks and heat kernels on graphs |
work_keys_str_mv | AT barlowmt randomwalksandheatkernelsongraphs |