Equilibrium states in ergodic theory:
This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on fi...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | London Mathematical Society student texts
42 |
Links: | https://doi.org/10.1017/CBO9781107359987 |
Zusammenfassung: | This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix. |
Umfang: | 1 Online-Ressource (ix, 178 Seiten) |
ISBN: | 9781107359987 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781107359987 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 130306s1998||||enk o ||1 0|eng|d | ||
020 | |a 9781107359987 | ||
100 | 1 | |a Keller, Gerhard |d 1954- | |
245 | 1 | 0 | |a Equilibrium states in ergodic theory |c Gerhard Keller |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 Online-Ressource (ix, 178 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society student texts |v 42 | |
520 | |a This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521594202 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521595346 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781107359987 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781107359987 |
---|---|
_version_ | 1832177780924612609 |
adam_text | |
any_adam_object | |
author | Keller, Gerhard 1954- |
author_facet | Keller, Gerhard 1954- |
author_role | |
author_sort | Keller, Gerhard 1954- |
author_variant | g k gk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01840nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781107359987</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">130306s1998||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107359987</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keller, Gerhard</subfield><subfield code="d">1954-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equilibrium states in ergodic theory</subfield><subfield code="c">Gerhard Keller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 178 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">42</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521594202</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521595346</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781107359987</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781107359987 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:32Z |
institution | BVB |
isbn | 9781107359987 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (ix, 178 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society student texts |
spelling | Keller, Gerhard 1954- Equilibrium states in ergodic theory Gerhard Keller Cambridge Cambridge University Press 1998 1 Online-Ressource (ix, 178 Seiten) txt c cr London Mathematical Society student texts 42 This book provides a detailed introduction to the ergodic theory of equilibrium states giving equal weight to two of its most important applications, namely to equilibrium statistical mechanics on lattices and to (time discrete) dynamical systems. It starts with a chapter on equilibrium states on finite probability spaces which introduces the main examples for the theory on an elementary level. After two chapters on abstract ergodic theory and entropy, equilibrium states and variational principles on compact metric spaces are introduced emphasizing their convex geometric interpretation. Stationary Gibbs measures, large deviations, the Ising model with external field, Markov measures, Sinai-Bowen-Ruelle measures for interval maps and dimension maximal measures for iterated function systems are the topics to which the general theory is applied in the last part of the book. The text is self contained except for some measure theoretic prerequisites which are listed (with references to the literature) in an appendix. Erscheint auch als Druck-Ausgabe 9780521594202 Erscheint auch als Druck-Ausgabe 9780521595346 |
spellingShingle | Keller, Gerhard 1954- Equilibrium states in ergodic theory |
title | Equilibrium states in ergodic theory |
title_auth | Equilibrium states in ergodic theory |
title_exact_search | Equilibrium states in ergodic theory |
title_full | Equilibrium states in ergodic theory Gerhard Keller |
title_fullStr | Equilibrium states in ergodic theory Gerhard Keller |
title_full_unstemmed | Equilibrium states in ergodic theory Gerhard Keller |
title_short | Equilibrium states in ergodic theory |
title_sort | equilibrium states in ergodic theory |
work_keys_str_mv | AT kellergerhard equilibriumstatesinergodictheory |