Generalized additive models for location, scale, and shape: a distributional regression approach, with applications
An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regr...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , , , |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge ; New York, NY
Cambridge University Press
2024
|
Schriftenreihe: | Cambridge series in statistical and probabilistic mathematics
56 |
Links: | https://doi.org/10.1017/9781009410076 |
Zusammenfassung: | An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. |
Umfang: | 1 Online-Ressource (xx, 285 Seiten) |
ISBN: | 9781009410076 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009410076 | ||
003 | UkCbUP | ||
005 | 20240308140504.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 230202s2024||||enk o ||1 0|eng|d | ||
020 | |a 9781009410076 | ||
100 | 1 | |a Stasinopoulos, Mikis D. | |
245 | 1 | 0 | |a Generalized additive models for location, scale, and shape |b a distributional regression approach, with applications |c Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller |
264 | 1 | |a Cambridge ; New York, NY |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (xx, 285 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge series in statistical and probabilistic mathematics |v 56 | |
520 | |a An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. | ||
700 | 1 | |a Heller, Gillian Z. | |
700 | 1 | |a Klein, Nadja |d 1987- | |
700 | 1 | |a Kneib, Thomas | |
700 | 1 | |a Mayr, Andreas |d 1983- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009410069 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781009410076 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009410076 |
---|---|
_version_ | 1825574045773463552 |
adam_text | |
any_adam_object | |
author | Stasinopoulos, Mikis D. |
author2 | Heller, Gillian Z. Klein, Nadja 1987- Kneib, Thomas Mayr, Andreas 1983- |
author2_role | |
author2_variant | g z h gz gzh n k nk t k tk a m am |
author_facet | Stasinopoulos, Mikis D. Heller, Gillian Z. Klein, Nadja 1987- Kneib, Thomas Mayr, Andreas 1983- |
author_role | |
author_sort | Stasinopoulos, Mikis D. |
author_variant | m d s md mds |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02046nam a2200301 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009410076</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20240308140504.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">230202s2024||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009410076</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stasinopoulos, Mikis D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized additive models for location, scale, and shape</subfield><subfield code="b">a distributional regression approach, with applications</subfield><subfield code="c">Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 285 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">56</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heller, Gillian Z.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Nadja</subfield><subfield code="d">1987-</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kneib, Thomas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayr, Andreas</subfield><subfield code="d">1983-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009410069</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009410076 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:57:59Z |
institution | BVB |
isbn | 9781009410076 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xx, 285 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series in statistical and probabilistic mathematics |
spelling | Stasinopoulos, Mikis D. Generalized additive models for location, scale, and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller Cambridge ; New York, NY Cambridge University Press 2024 1 Online-Ressource (xx, 285 Seiten) txt c cr Cambridge series in statistical and probabilistic mathematics 56 An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. Heller, Gillian Z. Klein, Nadja 1987- Kneib, Thomas Mayr, Andreas 1983- Erscheint auch als Druck-Ausgabe 9781009410069 |
spellingShingle | Stasinopoulos, Mikis D. Generalized additive models for location, scale, and shape a distributional regression approach, with applications |
title | Generalized additive models for location, scale, and shape a distributional regression approach, with applications |
title_auth | Generalized additive models for location, scale, and shape a distributional regression approach, with applications |
title_exact_search | Generalized additive models for location, scale, and shape a distributional regression approach, with applications |
title_full | Generalized additive models for location, scale, and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller |
title_fullStr | Generalized additive models for location, scale, and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller |
title_full_unstemmed | Generalized additive models for location, scale, and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller |
title_short | Generalized additive models for location, scale, and shape |
title_sort | generalized additive models for location scale and shape a distributional regression approach with applications |
title_sub | a distributional regression approach, with applications |
work_keys_str_mv | AT stasinopoulosmikisd generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications AT hellergillianz generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications AT kleinnadja generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications AT kneibthomas generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications AT mayrandreas generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications |