Quantum gravity in a laboratory?:
The characteristic - Planck - energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhau...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, UK
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge elements. Elements in the foundations of contemporary physics
|
Links: | https://doi.org/10.1017/9781009327541 |
Zusammenfassung: | The characteristic - Planck - energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike - it is claimed - recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden. |
Umfang: | 1 Online-Ressource (89 Seiten) |
ISBN: | 9781009327541 |
ISSN: | 2752-3039 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781009327541 | ||
003 | UkCbUP | ||
005 | 20230713022128.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 220706s2023||||enk o ||1 0|eng|d | ||
020 | |a 9781009327541 | ||
100 | 1 | |a Huggett, Nick | |
245 | 1 | 0 | |a Quantum gravity in a laboratory? |c Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri |
264 | 1 | |a Cambridge, UK |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (89 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge elements. Elements in the foundations of contemporary physics |x 2752-3039 | |
520 | |a The characteristic - Planck - energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike - it is claimed - recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden. | ||
700 | 1 | |a Linnemann, Niels | |
700 | 1 | |a Schneider, Mike D. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009327534 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781009327541 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781009327541 |
---|---|
_version_ | 1832177778451021824 |
adam_text | |
any_adam_object | |
author | Huggett, Nick |
author2 | Linnemann, Niels Schneider, Mike D. |
author2_role | |
author2_variant | n l nl m d s md mds |
author_facet | Huggett, Nick Linnemann, Niels Schneider, Mike D. |
author_role | |
author_sort | Huggett, Nick |
author_variant | n h nh |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01985nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781009327541</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20230713022128.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">220706s2023||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009327541</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huggett, Nick</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum gravity in a laboratory?</subfield><subfield code="c">Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (89 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge elements. Elements in the foundations of contemporary physics</subfield><subfield code="x">2752-3039</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The characteristic - Planck - energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike - it is claimed - recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linnemann, Niels</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Mike D.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009327534</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781009327541</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781009327541 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:30Z |
institution | BVB |
isbn | 9781009327541 |
issn | 2752-3039 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (89 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements. Elements in the foundations of contemporary physics |
spelling | Huggett, Nick Quantum gravity in a laboratory? Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri Cambridge, UK Cambridge University Press 2023 1 Online-Ressource (89 Seiten) txt c cr Cambridge elements. Elements in the foundations of contemporary physics 2752-3039 The characteristic - Planck - energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike - it is claimed - recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden. Linnemann, Niels Schneider, Mike D. Erscheint auch als Druck-Ausgabe 9781009327534 |
spellingShingle | Huggett, Nick Quantum gravity in a laboratory? |
title | Quantum gravity in a laboratory? |
title_auth | Quantum gravity in a laboratory? |
title_exact_search | Quantum gravity in a laboratory? |
title_full | Quantum gravity in a laboratory? Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri |
title_fullStr | Quantum gravity in a laboratory? Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri |
title_full_unstemmed | Quantum gravity in a laboratory? Nick Huggett, University of Illinois Chicago, Niels Linnemann, University of Geneva, Mike D. Schneider, University of Missouri |
title_short | Quantum gravity in a laboratory? |
title_sort | quantum gravity in a laboratory |
work_keys_str_mv | AT huggettnick quantumgravityinalaboratory AT linnemannniels quantumgravityinalaboratory AT schneidermiked quantumgravityinalaboratory |