Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
2011
|
Series: | Cambridge tracts in mathematics
186 |
Links: | https://doi.org/10.1017/CBO9780511933912 |
Summary: | This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems. |
Physical Description: | 1 Online-Ressource (xii, 205 Seiten) |
ISBN: | 9780511933912 |
Staff View
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511933912 | ||
003 | UkCbUP | ||
005 | 20151005020621.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 100928s2011||||enk o ||1 0|eng|d | ||
020 | |a 9780511933912 | ||
100 | 1 | |a Robinson, James C. |d 1969- | |
245 | 1 | 0 | |a Dimensions, embeddings, and attractors |c James C. Robinson |
246 | 3 | |a Dimensions, Embeddings, & Attractors | |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 Online-Ressource (xii, 205 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge tracts in mathematics |v 186 | |
520 | |a This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521898058 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511933912 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511933912 |
---|---|
_version_ | 1832177781921808384 |
adam_text | |
any_adam_object | |
author | Robinson, James C. 1969- |
author_facet | Robinson, James C. 1969- |
author_role | |
author_sort | Robinson, James C. 1969- |
author_variant | j c r jc jcr |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01856nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511933912</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">100928s2011||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511933912</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robinson, James C.</subfield><subfield code="d">1969-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dimensions, embeddings, and attractors</subfield><subfield code="c">James C. Robinson</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Dimensions, Embeddings, & Attractors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 205 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">186</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521898058</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511933912</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511933912 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:33Z |
institution | BVB |
isbn | 9780511933912 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 205 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Robinson, James C. 1969- Dimensions, embeddings, and attractors James C. Robinson Dimensions, Embeddings, & Attractors Cambridge Cambridge University Press 2011 1 Online-Ressource (xii, 205 Seiten) txt c cr Cambridge tracts in mathematics 186 This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems. Erscheint auch als Druck-Ausgabe 9780521898058 |
spellingShingle | Robinson, James C. 1969- Dimensions, embeddings, and attractors |
title | Dimensions, embeddings, and attractors |
title_alt | Dimensions, Embeddings, & Attractors |
title_auth | Dimensions, embeddings, and attractors |
title_exact_search | Dimensions, embeddings, and attractors |
title_full | Dimensions, embeddings, and attractors James C. Robinson |
title_fullStr | Dimensions, embeddings, and attractors James C. Robinson |
title_full_unstemmed | Dimensions, embeddings, and attractors James C. Robinson |
title_short | Dimensions, embeddings, and attractors |
title_sort | dimensions embeddings and attractors |
work_keys_str_mv | AT robinsonjamesc dimensionsembeddingsandattractors AT robinsonjamesc dimensionsembeddingsattractors |