Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Links: | https://doi.org/10.1017/CBO9780511809682 |
Zusammenfassung: | Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so. |
Umfang: | 1 Online-Ressource (xiv, 462 Seiten) |
ISBN: | 9780511809682 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511809682 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 101021s2004||||enk o ||1 0|eng|d | ||
020 | |a 9780511809682 | ||
100 | 1 | |a Shawe-Taylor, John | |
245 | 1 | 0 | |a Kernel methods for pattern analysis |c John Shawe-Taylor, Nello Cristianini |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 Online-Ressource (xiv, 462 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so. | ||
700 | 1 | |a Cristianini, Nello | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521813976 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511809682 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511809682 |
---|---|
_version_ | 1836432726292430848 |
adam_text | |
any_adam_object | |
author | Shawe-Taylor, John |
author2 | Cristianini, Nello |
author2_role | |
author2_variant | n c nc |
author_facet | Shawe-Taylor, John Cristianini, Nello |
author_role | |
author_sort | Shawe-Taylor, John |
author_variant | j s t jst |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01704nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511809682</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">101021s2004||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511809682</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shawe-Taylor, John</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kernel methods for pattern analysis</subfield><subfield code="c">John Shawe-Taylor, Nello Cristianini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 462 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cristianini, Nello</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521813976</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511809682</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511809682 |
illustrated | Not Illustrated |
indexdate | 2025-07-01T08:32:04Z |
institution | BVB |
isbn | 9780511809682 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 462 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Shawe-Taylor, John Kernel methods for pattern analysis John Shawe-Taylor, Nello Cristianini Cambridge Cambridge University Press 2004 1 Online-Ressource (xiv, 462 Seiten) txt c cr Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so. Cristianini, Nello Erscheint auch als Druck-Ausgabe 9780521813976 |
spellingShingle | Shawe-Taylor, John Kernel methods for pattern analysis |
title | Kernel methods for pattern analysis |
title_auth | Kernel methods for pattern analysis |
title_exact_search | Kernel methods for pattern analysis |
title_full | Kernel methods for pattern analysis John Shawe-Taylor, Nello Cristianini |
title_fullStr | Kernel methods for pattern analysis John Shawe-Taylor, Nello Cristianini |
title_full_unstemmed | Kernel methods for pattern analysis John Shawe-Taylor, Nello Cristianini |
title_short | Kernel methods for pattern analysis |
title_sort | kernel methods for pattern analysis |
work_keys_str_mv | AT shawetaylorjohn kernelmethodsforpatternanalysis AT cristianininello kernelmethodsforpatternanalysis |