Neural network learning: theoretical foundations
This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Links: | https://doi.org/10.1017/CBO9780511624216 |
Zusammenfassung: | This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. |
Umfang: | 1 Online-Ressource (xiv, 389 Seiten) |
ISBN: | 9780511624216 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511624216 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090916s1999||||enk o ||1 0|eng|d | ||
020 | |a 9780511624216 | ||
100 | 1 | |a Anthony, Martin | |
245 | 1 | 0 | |a Neural network learning |b theoretical foundations |c Martin Anthony and Peter L. Bartlett |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 Online-Ressource (xiv, 389 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. | ||
700 | 1 | |a Bartlett, Peter L. |d 1966- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521118620 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521573535 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511624216 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511624216 |
---|---|
_version_ | 1825574051362373634 |
adam_text | |
any_adam_object | |
author | Anthony, Martin |
author2 | Bartlett, Peter L. 1966- |
author2_role | |
author2_variant | p l b pl plb |
author_facet | Anthony, Martin Bartlett, Peter L. 1966- |
author_role | |
author_sort | Anthony, Martin |
author_variant | m a ma |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01883nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511624216</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090916s1999||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511624216</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anthony, Martin</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural network learning</subfield><subfield code="b">theoretical foundations</subfield><subfield code="c">Martin Anthony and Peter L. Bartlett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 389 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartlett, Peter L.</subfield><subfield code="d">1966-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521118620</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521573535</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511624216 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:05Z |
institution | BVB |
isbn | 9780511624216 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 389 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Anthony, Martin Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett Cambridge Cambridge University Press 1999 1 Online-Ressource (xiv, 389 Seiten) txt c cr This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Bartlett, Peter L. 1966- Erscheint auch als Druck-Ausgabe 9780521118620 Erscheint auch als Druck-Ausgabe 9780521573535 |
spellingShingle | Anthony, Martin Neural network learning theoretical foundations |
title | Neural network learning theoretical foundations |
title_auth | Neural network learning theoretical foundations |
title_exact_search | Neural network learning theoretical foundations |
title_full | Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett |
title_fullStr | Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett |
title_full_unstemmed | Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett |
title_short | Neural network learning |
title_sort | neural network learning theoretical foundations |
title_sub | theoretical foundations |
work_keys_str_mv | AT anthonymartin neuralnetworklearningtheoreticalfoundations AT bartlettpeterl neuralnetworklearningtheoreticalfoundations |