Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
1990
|
Series: | Cambridge studies in advanced mathematics
26 |
Links: | https://doi.org/10.1017/CBO9780511611582 |
Summary: | The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here. |
Physical Description: | 1 Online-Ressource (vi, 334 Seiten) |
ISBN: | 9780511611582 |
Staff View
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511611582 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090910s1990||||enk o ||1 0|eng|d | ||
020 | |a 9780511611582 | ||
100 | 1 | |a Gilbert, John E. | |
245 | 1 | 0 | |a Clifford algebras and Dirac operators in harmonic analysis |c John E. Gilbert, Margaret A.M. Murray |
246 | 3 | |a Clifford Algebras & Dirac Operators in Harmonic Analysis | |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 Online-Ressource (vi, 334 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 26 | |
520 | |a The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here. | ||
700 | 1 | |a Murray, Margaret Anne Marie | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521071987 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521346542 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511611582 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511611582 |
---|---|
_version_ | 1832177781096579073 |
adam_text | |
any_adam_object | |
author | Gilbert, John E. |
author2 | Murray, Margaret Anne Marie |
author2_role | |
author2_variant | m a m m mam mamm |
author_facet | Gilbert, John E. Murray, Margaret Anne Marie |
author_role | |
author_sort | Gilbert, John E. |
author_variant | j e g je jeg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01590nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511611582</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090910s1990||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511611582</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilbert, John E.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford algebras and Dirac operators in harmonic analysis</subfield><subfield code="c">John E. Gilbert, Margaret A.M. Murray</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Clifford Algebras & Dirac Operators in Harmonic Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 334 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">26</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Margaret Anne Marie</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521071987</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521346542</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511611582</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511611582 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:32Z |
institution | BVB |
isbn | 9780511611582 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (vi, 334 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Gilbert, John E. Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray Clifford Algebras & Dirac Operators in Harmonic Analysis Cambridge Cambridge University Press 1990 1 Online-Ressource (vi, 334 Seiten) txt c cr Cambridge studies in advanced mathematics 26 The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds and harmonic analysis. The authors show how algebra, geometry and differential equations all play a more fundamental role in Euclidean Fourier analysis than has been fully realized before. Their presentation of the Euclidean theory then links up naturally with the representation theory of semi-simple Lie groups. By keeping the treatment relatively simple, the book will be accessible to graduate students, yet the more advanced reader will also appreciate the wealth of results and insights made available here. Murray, Margaret Anne Marie Erscheint auch als Druck-Ausgabe 9780521071987 Erscheint auch als Druck-Ausgabe 9780521346542 |
spellingShingle | Gilbert, John E. Clifford algebras and Dirac operators in harmonic analysis |
title | Clifford algebras and Dirac operators in harmonic analysis |
title_alt | Clifford Algebras & Dirac Operators in Harmonic Analysis |
title_auth | Clifford algebras and Dirac operators in harmonic analysis |
title_exact_search | Clifford algebras and Dirac operators in harmonic analysis |
title_full | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_fullStr | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_full_unstemmed | Clifford algebras and Dirac operators in harmonic analysis John E. Gilbert, Margaret A.M. Murray |
title_short | Clifford algebras and Dirac operators in harmonic analysis |
title_sort | clifford algebras and dirac operators in harmonic analysis |
work_keys_str_mv | AT gilbertjohne cliffordalgebrasanddiracoperatorsinharmonicanalysis AT murraymargaretannemarie cliffordalgebrasanddiracoperatorsinharmonicanalysis AT gilbertjohne cliffordalgebrasdiracoperatorsinharmonicanalysis AT murraymargaretannemarie cliffordalgebrasdiracoperatorsinharmonicanalysis |