Stable groups:
The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpote...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
1997
|
Series: | London Mathematical Society lecture note series
240 |
Links: | https://doi.org/10.1017/CBO9780511566080 |
Summary: | The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field. |
Physical Description: | 1 Online-Ressource (ix, 309 Seiten) |
ISBN: | 9780511566080 |
Staff View
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511566080 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090518s1997||||enk o ||1 0|eng|d | ||
020 | |a 9780511566080 | ||
100 | 1 | |a Wagner, Frank O. |d 1964- | |
245 | 1 | 0 | |a Stable groups |c Frank O. Wagner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 Online-Ressource (ix, 309 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society lecture note series |v 240 | |
520 | |a The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521598392 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511566080 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511566080 |
---|---|
_version_ | 1827038448746233856 |
adam_text | |
any_adam_object | |
author | Wagner, Frank O. 1964- |
author_facet | Wagner, Frank O. 1964- |
author_role | |
author_sort | Wagner, Frank O. 1964- |
author_variant | f o w fo fow |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01563nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511566080</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090518s1997||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511566080</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wagner, Frank O.</subfield><subfield code="d">1964-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable groups</subfield><subfield code="c">Frank O. Wagner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 309 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">240</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521598392</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511566080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511566080 |
illustrated | Not Illustrated |
indexdate | 2025-03-19T15:54:03Z |
institution | BVB |
isbn | 9780511566080 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (ix, 309 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Wagner, Frank O. 1964- Stable groups Frank O. Wagner Cambridge Cambridge University Press 1997 1 Online-Ressource (ix, 309 Seiten) txt c cr London Mathematical Society lecture note series 240 The study of stable groups connects model theory, algebraic geometry and group theory. It analyses groups which possess a certain very general dependence relation (Shelah's notion of 'forking'), and tries to derive structural properties from this. These may be group-theoretic (nilpotency or solubility of a given group), algebro-geometric (identification of a group as an algebraic group), or model-theoretic (description of the definable sets). In this book, the general theory of stable groups is developed from the beginning (including a chapter on preliminaries in group theory and model theory), concentrating on the model- and group-theoretic aspects. It brings together the various extensions of the original finite rank theory under a unified perspective and provides a coherent exposition of the knowledge in the field. Erscheint auch als Druck-Ausgabe 9780521598392 |
spellingShingle | Wagner, Frank O. 1964- Stable groups |
title | Stable groups |
title_auth | Stable groups |
title_exact_search | Stable groups |
title_full | Stable groups Frank O. Wagner |
title_fullStr | Stable groups Frank O. Wagner |
title_full_unstemmed | Stable groups Frank O. Wagner |
title_short | Stable groups |
title_sort | stable groups |
work_keys_str_mv | AT wagnerfranko stablegroups |