Analytical Case Studies on Municipal and Biomedical Waste Management: Perspectives on Sustainable Development Goals
This book covers perspectives addressing the sustainable development goals through analytical and case studies on municipal and biomedical waste management. It consists of ten selectively curated highly technical chapters including practical case studies and examples
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton
Taylor & Francis Group
2024
|
Ausgabe: | 1st ed |
Schlagwörter: | |
Links: | https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31468012 |
Zusammenfassung: | This book covers perspectives addressing the sustainable development goals through analytical and case studies on municipal and biomedical waste management. It consists of ten selectively curated highly technical chapters including practical case studies and examples |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (172 Seiten) |
ISBN: | 9781040164969 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050100969 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241218s2024 xx o|||| 00||| eng d | ||
020 | |a 9781040164969 |9 978-1-04-016496-9 | ||
035 | |a (ZDB-30-PQE)EBC31468012 | ||
035 | |a (ZDB-30-PAD)EBC31468012 | ||
035 | |a (ZDB-89-EBL)EBL31468012 | ||
035 | |a (OCoLC)1451797076 | ||
035 | |a (DE-599)BVBBV050100969 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 363.728 | |
100 | 1 | |a Choudhury, Moharana |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analytical Case Studies on Municipal and Biomedical Waste Management |b Perspectives on Sustainable Development Goals |
250 | |a 1st ed | ||
264 | 1 | |a Boca Raton |b Taylor & Francis Group |c 2024 | |
264 | 4 | |c ©2025 | |
300 | |a 1 Online-Ressource (172 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- List of Contributors -- 1 Global Energy Potential of Landfill Gas -- 1.1 Introduction -- 1.1.1 Selected Global LFG to Electricity Generation Projects -- 1.1.2 Selected Global LFG to Direct Use Projects -- 1.1.3 Selected Global LFG to Flaring Projects -- 1.2 Parameters Affecting MSW Decomposition and LFG Emission in Landfills -- 1.2.1 Energy Potential of LFG per Unit of MSW -- 1.2.2 Energy Content of LFG and Methane -- 1.3 LFG and Methane Yield -- 1.3.1 LFG and Methane Yield Using Stoichiometric Method -- 1.3.2 LFG and Methane Yield Using Biodegradability Method -- 1.3.3 LFG and Methane Yield in Digester Studies -- 1.3.4 LFG and Methane Yield in Laboratory Simulation/Full-Scale Studies -- 1.4 Conclusion -- References -- 2 Global Landfill Gas Emission Models: A Critical Analysis -- 2.1 Introduction -- 2.2 Standard Protocol for LFG Recovery -- 2.2.1 Pump Test Methodology for a Typical Landfill -- 2.2.2 Static Testing of LFG -- 2.2.3 Dynamic Testing of LFG -- 2.2.4 LFG Well Adjustment Procedure -- 2.2.5 Monitoring of LFG Pressure Probes -- 2.2.6 Radius of Influence for Okhla Landfill -- 2.3 Commercial Applications of LFG -- 2.4 Model Parameters for LFG Prediction -- 2.4.1 Baseline Parameters for LFG Prediction -- 2.4.2 Secondary Parameters for LFG Prediction -- 2.5 Global LFG Models -- 2.6 Research Gaps in the Developed LFG Models -- 2.7 Conclusions -- References -- 3 Waste to Energy: A Case Study of Christ University, India -- 3.1 Introduction -- 3.2 Waste Management in Higher Educational Institutions -- 3.3 Waste Management in Christ University: A Roadmap for Sustainability -- 3.4 Sources of Waste Generation at Christ University -- 3.5 Collection of Waste -- 3.6 Segregation of Waste -- 3.7 Process of Waste Management | |
505 | 8 | |a 3.8 Outcomes Post-Recycling and Reproduction -- Beneficiaries and Community Involvement -- 3.9 The Meta Picture -- 3.10 Conclusion -- Acknowledgements -- References -- 4 Population Dynamics of Gamma Proteobacteria: Critical Analysis during Different Phases of Composting -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Field Setup -- 4.2.2 Biochemical Estimations -- 4.2.3 Determination of pH -- 4.2.4 Determination of Moisture Content (dry wt.) -- 4.2.5 Fluorescence In Situ Hybridization -- 4.2.6 Confocal Microscope -- 4.2.7 Sample Preparation for Live-Dead Cell Count -- 4.2.8 Statistical Analysis -- 4.3 Results and Discussion -- Conclusion -- Acknowledgements -- References -- 5 Critical Analysis of MoS2-Based Systems for Textile Wastewater Treatment -- 5.1 Introduction: Basic Properties and Importance of MoS2 -- 5.2 General Methods Employed for the Preparation of MoS2 and MoS2-Based Systems -- 5.2.1 Hydrothermal Approach -- 5.2.2 Exfoliation Process -- 5.2.3 Chemical Vapour Deposition -- 5.3 Characterization of MoS2 -- 5.4 Modified MoS2 Systems -- 5.4.1 Binary Systems -- 5.4.2 Ternary Systems -- 5.5 Modified MoS2 Systems for Wastewater Treatment -- 5.6 Mechanism of Degradation of Textile Dyes -- 5.6.1 Excitation: Photon Absorption -- 5.6.2 Separation: Electron-Hole Pair Formation -- 5.6.3 Dye Degradation: Advanced Oxidation Process -- 5.6.4 Photocatalytic Schemes Based on Types of Heterojunctions -- 5.7 Conclusion -- Acknowledgements -- References -- 6 Integrated Biomedical Waste Management: Critical Analysis on Sustainable Circular Economy -- 6.1 Introduction -- 6.2 COVID-19 and Solid Waste Management -- 6.2.1 Waste Management Challenges -- 6.2.2 Waste Collection -- 6.2.3 Waste Sorting, Segregation, and Storage -- 6.2.4 Transportation -- 6.2.5 Waste Processing, Treatment, and Final Disposal | |
505 | 8 | |a 6.3 Plastic Waste Management and the Role of the Circular Economy -- 6.4 Circular Economy during COVID-19 and Beyond -- 6.5 Using the Circular Economy in Conjunction with the COVID-19 Response -- 6.6 Worldwide Scenario of Medical Waste Management during COVID-19: Case Studies -- 6.6.1 India -- 6.6.2 Lebanon -- 6.6.3 Bangladesh -- 6.6.4 China -- 6.7 Conclusions -- References -- 7 Biomedical Waste Management: Critical Analysis of Occupational Safety and Concerns -- 7.1 Introduction -- 7.2 Biomedical Waste Management-Directive Policies -- 7.3 Biomedical Waste Generation and Segregation in the Pandemic Period (COVID-19) -- 7.4 Steps Involved in COVID-19-Associated Biomedical Waste Management -- 7.4.1 Step I-Segregation -- 7.4.2 Step II-Packaging -- 7.4.3 Step III-Transportation -- 7.5 COVID-19-Associated Biomedical Waste Management-Treatment Strategies -- 7.5.1 Chemical Processes -- 7.5.2 Thermal Processes -- 7.5.3 Mechanical Processes -- 7.5.4 Irradiation Processes -- 7.5.5 Biological Processes -- 7.6 Occupational Safety and Health -- 7.7 Policy and Regulatory Framework -- 7.8 Safe Handling of COVID-19-associated Biomedical Waste -- References -- 8 Biomedical Waste Management: Legal and Regulatory Framework and Remedial Strategies -- 8.1 Introduction -- 8.2 Bio-Medical Waste Management: Legal and Regulatory Framework -- 8.2.1 International Perspective -- 8.2.2 Indian Perspective -- 8.3 Bio-Medical Waste Management Remedial Measures in Select Countries -- 8.3.1 United Kingdom -- 8.3.2 Indonesia -- 8.3.3 Kenya -- 8.3.4 Sri Lanka -- 8.4 Bio-Medical Waste Management: Issues and Challenges -- References -- 9 Pandemic-Associated Biomedical Waste Management: Socio-Environmental Impact, Sustainable Strategies, and Renewable Technologies -- 9.1 Introduction -- 9.2 Sources and Types of Biomedical Waste -- 9.3 Existing Problems with BMW. | |
505 | 8 | |a 9.4 Managing Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.5 Policy Gaps -- 9.6 Environmental and Social Impact -- 9.6.1 Open Dumping -- 9.6.2 Marine Litter -- 9.6.3 Open Burning: Incineration Is a Public Health Concern -- 9.6.4 Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.6.5 Concern with Conditions of Operation in Suburbs and Remote Areas -- 9.6.6 Landfill Sites: A Source of Leachate of Water -- 9.7 Developing Resilience and Preparedness for Events in the Future by Redesigning Waste Management Systems -- 9.7.1 Capacity Building of Sanitation Workers -- 9.7.2 Role of Municipalities and NGOs -- 9.7.3 Renewable Energy Technologies -- 9.7.4 Nano-Based Technologies -- References -- 10 Environmental Concerns and Recent Advances in Management of Pandemic-Associated Biomedical Wastes: Case Studies on India and Bangladesh -- 10.1 Introduction -- 10.2 Environmental Concerns of COVID-19 Waste -- 10.2.1 Effects on Animal Health -- 10.2.2 Effects on Human Health -- 10.2.3 Effects on Environmental Sectors -- 10.3 Strategies Adopted by Countries across the Globe to Manage COVID-19 -- 10.4 COVID-19 Waste Management Scenario in India and Bangladesh -- 10.5 Future Recommendations -- References -- Index | |
520 | |a This book covers perspectives addressing the sustainable development goals through analytical and case studies on municipal and biomedical waste management. It consists of ten selectively curated highly technical chapters including practical case studies and examples | ||
650 | 4 | |a Sustainable development | |
700 | 1 | |a Rajpal, Ankur |e Sonstige |4 oth | |
700 | 1 | |a Goswami, Srijan |e Sonstige |4 oth | |
700 | 1 | |a Chakravorty, Arghya |e Sonstige |4 oth | |
700 | 1 | |a Raghavan, Vimala |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Choudhury, Moharana |t Analytical Case Studies on Municipal and Biomedical Waste Management |d Boca Raton : Taylor & Francis Group,c2024 |z 9781032796918 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035438131 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31468012 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820967541373140992 |
---|---|
adam_text | |
any_adam_object | |
author | Choudhury, Moharana |
author_facet | Choudhury, Moharana |
author_role | aut |
author_sort | Choudhury, Moharana |
author_variant | m c mc |
building | Verbundindex |
bvnumber | BV050100969 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- List of Contributors -- 1 Global Energy Potential of Landfill Gas -- 1.1 Introduction -- 1.1.1 Selected Global LFG to Electricity Generation Projects -- 1.1.2 Selected Global LFG to Direct Use Projects -- 1.1.3 Selected Global LFG to Flaring Projects -- 1.2 Parameters Affecting MSW Decomposition and LFG Emission in Landfills -- 1.2.1 Energy Potential of LFG per Unit of MSW -- 1.2.2 Energy Content of LFG and Methane -- 1.3 LFG and Methane Yield -- 1.3.1 LFG and Methane Yield Using Stoichiometric Method -- 1.3.2 LFG and Methane Yield Using Biodegradability Method -- 1.3.3 LFG and Methane Yield in Digester Studies -- 1.3.4 LFG and Methane Yield in Laboratory Simulation/Full-Scale Studies -- 1.4 Conclusion -- References -- 2 Global Landfill Gas Emission Models: A Critical Analysis -- 2.1 Introduction -- 2.2 Standard Protocol for LFG Recovery -- 2.2.1 Pump Test Methodology for a Typical Landfill -- 2.2.2 Static Testing of LFG -- 2.2.3 Dynamic Testing of LFG -- 2.2.4 LFG Well Adjustment Procedure -- 2.2.5 Monitoring of LFG Pressure Probes -- 2.2.6 Radius of Influence for Okhla Landfill -- 2.3 Commercial Applications of LFG -- 2.4 Model Parameters for LFG Prediction -- 2.4.1 Baseline Parameters for LFG Prediction -- 2.4.2 Secondary Parameters for LFG Prediction -- 2.5 Global LFG Models -- 2.6 Research Gaps in the Developed LFG Models -- 2.7 Conclusions -- References -- 3 Waste to Energy: A Case Study of Christ University, India -- 3.1 Introduction -- 3.2 Waste Management in Higher Educational Institutions -- 3.3 Waste Management in Christ University: A Roadmap for Sustainability -- 3.4 Sources of Waste Generation at Christ University -- 3.5 Collection of Waste -- 3.6 Segregation of Waste -- 3.7 Process of Waste Management 3.8 Outcomes Post-Recycling and Reproduction -- Beneficiaries and Community Involvement -- 3.9 The Meta Picture -- 3.10 Conclusion -- Acknowledgements -- References -- 4 Population Dynamics of Gamma Proteobacteria: Critical Analysis during Different Phases of Composting -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Field Setup -- 4.2.2 Biochemical Estimations -- 4.2.3 Determination of pH -- 4.2.4 Determination of Moisture Content (dry wt.) -- 4.2.5 Fluorescence In Situ Hybridization -- 4.2.6 Confocal Microscope -- 4.2.7 Sample Preparation for Live-Dead Cell Count -- 4.2.8 Statistical Analysis -- 4.3 Results and Discussion -- Conclusion -- Acknowledgements -- References -- 5 Critical Analysis of MoS2-Based Systems for Textile Wastewater Treatment -- 5.1 Introduction: Basic Properties and Importance of MoS2 -- 5.2 General Methods Employed for the Preparation of MoS2 and MoS2-Based Systems -- 5.2.1 Hydrothermal Approach -- 5.2.2 Exfoliation Process -- 5.2.3 Chemical Vapour Deposition -- 5.3 Characterization of MoS2 -- 5.4 Modified MoS2 Systems -- 5.4.1 Binary Systems -- 5.4.2 Ternary Systems -- 5.5 Modified MoS2 Systems for Wastewater Treatment -- 5.6 Mechanism of Degradation of Textile Dyes -- 5.6.1 Excitation: Photon Absorption -- 5.6.2 Separation: Electron-Hole Pair Formation -- 5.6.3 Dye Degradation: Advanced Oxidation Process -- 5.6.4 Photocatalytic Schemes Based on Types of Heterojunctions -- 5.7 Conclusion -- Acknowledgements -- References -- 6 Integrated Biomedical Waste Management: Critical Analysis on Sustainable Circular Economy -- 6.1 Introduction -- 6.2 COVID-19 and Solid Waste Management -- 6.2.1 Waste Management Challenges -- 6.2.2 Waste Collection -- 6.2.3 Waste Sorting, Segregation, and Storage -- 6.2.4 Transportation -- 6.2.5 Waste Processing, Treatment, and Final Disposal 6.3 Plastic Waste Management and the Role of the Circular Economy -- 6.4 Circular Economy during COVID-19 and Beyond -- 6.5 Using the Circular Economy in Conjunction with the COVID-19 Response -- 6.6 Worldwide Scenario of Medical Waste Management during COVID-19: Case Studies -- 6.6.1 India -- 6.6.2 Lebanon -- 6.6.3 Bangladesh -- 6.6.4 China -- 6.7 Conclusions -- References -- 7 Biomedical Waste Management: Critical Analysis of Occupational Safety and Concerns -- 7.1 Introduction -- 7.2 Biomedical Waste Management-Directive Policies -- 7.3 Biomedical Waste Generation and Segregation in the Pandemic Period (COVID-19) -- 7.4 Steps Involved in COVID-19-Associated Biomedical Waste Management -- 7.4.1 Step I-Segregation -- 7.4.2 Step II-Packaging -- 7.4.3 Step III-Transportation -- 7.5 COVID-19-Associated Biomedical Waste Management-Treatment Strategies -- 7.5.1 Chemical Processes -- 7.5.2 Thermal Processes -- 7.5.3 Mechanical Processes -- 7.5.4 Irradiation Processes -- 7.5.5 Biological Processes -- 7.6 Occupational Safety and Health -- 7.7 Policy and Regulatory Framework -- 7.8 Safe Handling of COVID-19-associated Biomedical Waste -- References -- 8 Biomedical Waste Management: Legal and Regulatory Framework and Remedial Strategies -- 8.1 Introduction -- 8.2 Bio-Medical Waste Management: Legal and Regulatory Framework -- 8.2.1 International Perspective -- 8.2.2 Indian Perspective -- 8.3 Bio-Medical Waste Management Remedial Measures in Select Countries -- 8.3.1 United Kingdom -- 8.3.2 Indonesia -- 8.3.3 Kenya -- 8.3.4 Sri Lanka -- 8.4 Bio-Medical Waste Management: Issues and Challenges -- References -- 9 Pandemic-Associated Biomedical Waste Management: Socio-Environmental Impact, Sustainable Strategies, and Renewable Technologies -- 9.1 Introduction -- 9.2 Sources and Types of Biomedical Waste -- 9.3 Existing Problems with BMW. 9.4 Managing Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.5 Policy Gaps -- 9.6 Environmental and Social Impact -- 9.6.1 Open Dumping -- 9.6.2 Marine Litter -- 9.6.3 Open Burning: Incineration Is a Public Health Concern -- 9.6.4 Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.6.5 Concern with Conditions of Operation in Suburbs and Remote Areas -- 9.6.6 Landfill Sites: A Source of Leachate of Water -- 9.7 Developing Resilience and Preparedness for Events in the Future by Redesigning Waste Management Systems -- 9.7.1 Capacity Building of Sanitation Workers -- 9.7.2 Role of Municipalities and NGOs -- 9.7.3 Renewable Energy Technologies -- 9.7.4 Nano-Based Technologies -- References -- 10 Environmental Concerns and Recent Advances in Management of Pandemic-Associated Biomedical Wastes: Case Studies on India and Bangladesh -- 10.1 Introduction -- 10.2 Environmental Concerns of COVID-19 Waste -- 10.2.1 Effects on Animal Health -- 10.2.2 Effects on Human Health -- 10.2.3 Effects on Environmental Sectors -- 10.3 Strategies Adopted by Countries across the Globe to Manage COVID-19 -- 10.4 COVID-19 Waste Management Scenario in India and Bangladesh -- 10.5 Future Recommendations -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC31468012 (ZDB-30-PAD)EBC31468012 (ZDB-89-EBL)EBL31468012 (OCoLC)1451797076 (DE-599)BVBBV050100969 |
dewey-full | 363.728 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 363 - Other social problems and services |
dewey-raw | 363.728 |
dewey-search | 363.728 |
dewey-sort | 3363.728 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Soziologie |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050100969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241218s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781040164969</subfield><subfield code="9">978-1-04-016496-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31468012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31468012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31468012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1451797076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050100969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">363.728</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choudhury, Moharana</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical Case Studies on Municipal and Biomedical Waste Management</subfield><subfield code="b">Perspectives on Sustainable Development Goals</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">Taylor & Francis Group</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (172 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- List of Contributors -- 1 Global Energy Potential of Landfill Gas -- 1.1 Introduction -- 1.1.1 Selected Global LFG to Electricity Generation Projects -- 1.1.2 Selected Global LFG to Direct Use Projects -- 1.1.3 Selected Global LFG to Flaring Projects -- 1.2 Parameters Affecting MSW Decomposition and LFG Emission in Landfills -- 1.2.1 Energy Potential of LFG per Unit of MSW -- 1.2.2 Energy Content of LFG and Methane -- 1.3 LFG and Methane Yield -- 1.3.1 LFG and Methane Yield Using Stoichiometric Method -- 1.3.2 LFG and Methane Yield Using Biodegradability Method -- 1.3.3 LFG and Methane Yield in Digester Studies -- 1.3.4 LFG and Methane Yield in Laboratory Simulation/Full-Scale Studies -- 1.4 Conclusion -- References -- 2 Global Landfill Gas Emission Models: A Critical Analysis -- 2.1 Introduction -- 2.2 Standard Protocol for LFG Recovery -- 2.2.1 Pump Test Methodology for a Typical Landfill -- 2.2.2 Static Testing of LFG -- 2.2.3 Dynamic Testing of LFG -- 2.2.4 LFG Well Adjustment Procedure -- 2.2.5 Monitoring of LFG Pressure Probes -- 2.2.6 Radius of Influence for Okhla Landfill -- 2.3 Commercial Applications of LFG -- 2.4 Model Parameters for LFG Prediction -- 2.4.1 Baseline Parameters for LFG Prediction -- 2.4.2 Secondary Parameters for LFG Prediction -- 2.5 Global LFG Models -- 2.6 Research Gaps in the Developed LFG Models -- 2.7 Conclusions -- References -- 3 Waste to Energy: A Case Study of Christ University, India -- 3.1 Introduction -- 3.2 Waste Management in Higher Educational Institutions -- 3.3 Waste Management in Christ University: A Roadmap for Sustainability -- 3.4 Sources of Waste Generation at Christ University -- 3.5 Collection of Waste -- 3.6 Segregation of Waste -- 3.7 Process of Waste Management</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.8 Outcomes Post-Recycling and Reproduction -- Beneficiaries and Community Involvement -- 3.9 The Meta Picture -- 3.10 Conclusion -- Acknowledgements -- References -- 4 Population Dynamics of Gamma Proteobacteria: Critical Analysis during Different Phases of Composting -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Field Setup -- 4.2.2 Biochemical Estimations -- 4.2.3 Determination of pH -- 4.2.4 Determination of Moisture Content (dry wt.) -- 4.2.5 Fluorescence In Situ Hybridization -- 4.2.6 Confocal Microscope -- 4.2.7 Sample Preparation for Live-Dead Cell Count -- 4.2.8 Statistical Analysis -- 4.3 Results and Discussion -- Conclusion -- Acknowledgements -- References -- 5 Critical Analysis of MoS2-Based Systems for Textile Wastewater Treatment -- 5.1 Introduction: Basic Properties and Importance of MoS2 -- 5.2 General Methods Employed for the Preparation of MoS2 and MoS2-Based Systems -- 5.2.1 Hydrothermal Approach -- 5.2.2 Exfoliation Process -- 5.2.3 Chemical Vapour Deposition -- 5.3 Characterization of MoS2 -- 5.4 Modified MoS2 Systems -- 5.4.1 Binary Systems -- 5.4.2 Ternary Systems -- 5.5 Modified MoS2 Systems for Wastewater Treatment -- 5.6 Mechanism of Degradation of Textile Dyes -- 5.6.1 Excitation: Photon Absorption -- 5.6.2 Separation: Electron-Hole Pair Formation -- 5.6.3 Dye Degradation: Advanced Oxidation Process -- 5.6.4 Photocatalytic Schemes Based on Types of Heterojunctions -- 5.7 Conclusion -- Acknowledgements -- References -- 6 Integrated Biomedical Waste Management: Critical Analysis on Sustainable Circular Economy -- 6.1 Introduction -- 6.2 COVID-19 and Solid Waste Management -- 6.2.1 Waste Management Challenges -- 6.2.2 Waste Collection -- 6.2.3 Waste Sorting, Segregation, and Storage -- 6.2.4 Transportation -- 6.2.5 Waste Processing, Treatment, and Final Disposal</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Plastic Waste Management and the Role of the Circular Economy -- 6.4 Circular Economy during COVID-19 and Beyond -- 6.5 Using the Circular Economy in Conjunction with the COVID-19 Response -- 6.6 Worldwide Scenario of Medical Waste Management during COVID-19: Case Studies -- 6.6.1 India -- 6.6.2 Lebanon -- 6.6.3 Bangladesh -- 6.6.4 China -- 6.7 Conclusions -- References -- 7 Biomedical Waste Management: Critical Analysis of Occupational Safety and Concerns -- 7.1 Introduction -- 7.2 Biomedical Waste Management-Directive Policies -- 7.3 Biomedical Waste Generation and Segregation in the Pandemic Period (COVID-19) -- 7.4 Steps Involved in COVID-19-Associated Biomedical Waste Management -- 7.4.1 Step I-Segregation -- 7.4.2 Step II-Packaging -- 7.4.3 Step III-Transportation -- 7.5 COVID-19-Associated Biomedical Waste Management-Treatment Strategies -- 7.5.1 Chemical Processes -- 7.5.2 Thermal Processes -- 7.5.3 Mechanical Processes -- 7.5.4 Irradiation Processes -- 7.5.5 Biological Processes -- 7.6 Occupational Safety and Health -- 7.7 Policy and Regulatory Framework -- 7.8 Safe Handling of COVID-19-associated Biomedical Waste -- References -- 8 Biomedical Waste Management: Legal and Regulatory Framework and Remedial Strategies -- 8.1 Introduction -- 8.2 Bio-Medical Waste Management: Legal and Regulatory Framework -- 8.2.1 International Perspective -- 8.2.2 Indian Perspective -- 8.3 Bio-Medical Waste Management Remedial Measures in Select Countries -- 8.3.1 United Kingdom -- 8.3.2 Indonesia -- 8.3.3 Kenya -- 8.3.4 Sri Lanka -- 8.4 Bio-Medical Waste Management: Issues and Challenges -- References -- 9 Pandemic-Associated Biomedical Waste Management: Socio-Environmental Impact, Sustainable Strategies, and Renewable Technologies -- 9.1 Introduction -- 9.2 Sources and Types of Biomedical Waste -- 9.3 Existing Problems with BMW.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.4 Managing Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.5 Policy Gaps -- 9.6 Environmental and Social Impact -- 9.6.1 Open Dumping -- 9.6.2 Marine Litter -- 9.6.3 Open Burning: Incineration Is a Public Health Concern -- 9.6.4 Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.6.5 Concern with Conditions of Operation in Suburbs and Remote Areas -- 9.6.6 Landfill Sites: A Source of Leachate of Water -- 9.7 Developing Resilience and Preparedness for Events in the Future by Redesigning Waste Management Systems -- 9.7.1 Capacity Building of Sanitation Workers -- 9.7.2 Role of Municipalities and NGOs -- 9.7.3 Renewable Energy Technologies -- 9.7.4 Nano-Based Technologies -- References -- 10 Environmental Concerns and Recent Advances in Management of Pandemic-Associated Biomedical Wastes: Case Studies on India and Bangladesh -- 10.1 Introduction -- 10.2 Environmental Concerns of COVID-19 Waste -- 10.2.1 Effects on Animal Health -- 10.2.2 Effects on Human Health -- 10.2.3 Effects on Environmental Sectors -- 10.3 Strategies Adopted by Countries across the Globe to Manage COVID-19 -- 10.4 COVID-19 Waste Management Scenario in India and Bangladesh -- 10.5 Future Recommendations -- References -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book covers perspectives addressing the sustainable development goals through analytical and case studies on municipal and biomedical waste management. It consists of ten selectively curated highly technical chapters including practical case studies and examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajpal, Ankur</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goswami, Srijan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakravorty, Arghya</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raghavan, Vimala</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Choudhury, Moharana</subfield><subfield code="t">Analytical Case Studies on Municipal and Biomedical Waste Management</subfield><subfield code="d">Boca Raton : Taylor & Francis Group,c2024</subfield><subfield code="z">9781032796918</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035438131</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31468012</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050100969 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T15:39:35Z |
institution | BVB |
isbn | 9781040164969 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035438131 |
oclc_num | 1451797076 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (172 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Taylor & Francis Group |
record_format | marc |
spelling | Choudhury, Moharana Verfasser aut Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals 1st ed Boca Raton Taylor & Francis Group 2024 ©2025 1 Online-Ressource (172 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- List of Contributors -- 1 Global Energy Potential of Landfill Gas -- 1.1 Introduction -- 1.1.1 Selected Global LFG to Electricity Generation Projects -- 1.1.2 Selected Global LFG to Direct Use Projects -- 1.1.3 Selected Global LFG to Flaring Projects -- 1.2 Parameters Affecting MSW Decomposition and LFG Emission in Landfills -- 1.2.1 Energy Potential of LFG per Unit of MSW -- 1.2.2 Energy Content of LFG and Methane -- 1.3 LFG and Methane Yield -- 1.3.1 LFG and Methane Yield Using Stoichiometric Method -- 1.3.2 LFG and Methane Yield Using Biodegradability Method -- 1.3.3 LFG and Methane Yield in Digester Studies -- 1.3.4 LFG and Methane Yield in Laboratory Simulation/Full-Scale Studies -- 1.4 Conclusion -- References -- 2 Global Landfill Gas Emission Models: A Critical Analysis -- 2.1 Introduction -- 2.2 Standard Protocol for LFG Recovery -- 2.2.1 Pump Test Methodology for a Typical Landfill -- 2.2.2 Static Testing of LFG -- 2.2.3 Dynamic Testing of LFG -- 2.2.4 LFG Well Adjustment Procedure -- 2.2.5 Monitoring of LFG Pressure Probes -- 2.2.6 Radius of Influence for Okhla Landfill -- 2.3 Commercial Applications of LFG -- 2.4 Model Parameters for LFG Prediction -- 2.4.1 Baseline Parameters for LFG Prediction -- 2.4.2 Secondary Parameters for LFG Prediction -- 2.5 Global LFG Models -- 2.6 Research Gaps in the Developed LFG Models -- 2.7 Conclusions -- References -- 3 Waste to Energy: A Case Study of Christ University, India -- 3.1 Introduction -- 3.2 Waste Management in Higher Educational Institutions -- 3.3 Waste Management in Christ University: A Roadmap for Sustainability -- 3.4 Sources of Waste Generation at Christ University -- 3.5 Collection of Waste -- 3.6 Segregation of Waste -- 3.7 Process of Waste Management 3.8 Outcomes Post-Recycling and Reproduction -- Beneficiaries and Community Involvement -- 3.9 The Meta Picture -- 3.10 Conclusion -- Acknowledgements -- References -- 4 Population Dynamics of Gamma Proteobacteria: Critical Analysis during Different Phases of Composting -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Field Setup -- 4.2.2 Biochemical Estimations -- 4.2.3 Determination of pH -- 4.2.4 Determination of Moisture Content (dry wt.) -- 4.2.5 Fluorescence In Situ Hybridization -- 4.2.6 Confocal Microscope -- 4.2.7 Sample Preparation for Live-Dead Cell Count -- 4.2.8 Statistical Analysis -- 4.3 Results and Discussion -- Conclusion -- Acknowledgements -- References -- 5 Critical Analysis of MoS2-Based Systems for Textile Wastewater Treatment -- 5.1 Introduction: Basic Properties and Importance of MoS2 -- 5.2 General Methods Employed for the Preparation of MoS2 and MoS2-Based Systems -- 5.2.1 Hydrothermal Approach -- 5.2.2 Exfoliation Process -- 5.2.3 Chemical Vapour Deposition -- 5.3 Characterization of MoS2 -- 5.4 Modified MoS2 Systems -- 5.4.1 Binary Systems -- 5.4.2 Ternary Systems -- 5.5 Modified MoS2 Systems for Wastewater Treatment -- 5.6 Mechanism of Degradation of Textile Dyes -- 5.6.1 Excitation: Photon Absorption -- 5.6.2 Separation: Electron-Hole Pair Formation -- 5.6.3 Dye Degradation: Advanced Oxidation Process -- 5.6.4 Photocatalytic Schemes Based on Types of Heterojunctions -- 5.7 Conclusion -- Acknowledgements -- References -- 6 Integrated Biomedical Waste Management: Critical Analysis on Sustainable Circular Economy -- 6.1 Introduction -- 6.2 COVID-19 and Solid Waste Management -- 6.2.1 Waste Management Challenges -- 6.2.2 Waste Collection -- 6.2.3 Waste Sorting, Segregation, and Storage -- 6.2.4 Transportation -- 6.2.5 Waste Processing, Treatment, and Final Disposal 6.3 Plastic Waste Management and the Role of the Circular Economy -- 6.4 Circular Economy during COVID-19 and Beyond -- 6.5 Using the Circular Economy in Conjunction with the COVID-19 Response -- 6.6 Worldwide Scenario of Medical Waste Management during COVID-19: Case Studies -- 6.6.1 India -- 6.6.2 Lebanon -- 6.6.3 Bangladesh -- 6.6.4 China -- 6.7 Conclusions -- References -- 7 Biomedical Waste Management: Critical Analysis of Occupational Safety and Concerns -- 7.1 Introduction -- 7.2 Biomedical Waste Management-Directive Policies -- 7.3 Biomedical Waste Generation and Segregation in the Pandemic Period (COVID-19) -- 7.4 Steps Involved in COVID-19-Associated Biomedical Waste Management -- 7.4.1 Step I-Segregation -- 7.4.2 Step II-Packaging -- 7.4.3 Step III-Transportation -- 7.5 COVID-19-Associated Biomedical Waste Management-Treatment Strategies -- 7.5.1 Chemical Processes -- 7.5.2 Thermal Processes -- 7.5.3 Mechanical Processes -- 7.5.4 Irradiation Processes -- 7.5.5 Biological Processes -- 7.6 Occupational Safety and Health -- 7.7 Policy and Regulatory Framework -- 7.8 Safe Handling of COVID-19-associated Biomedical Waste -- References -- 8 Biomedical Waste Management: Legal and Regulatory Framework and Remedial Strategies -- 8.1 Introduction -- 8.2 Bio-Medical Waste Management: Legal and Regulatory Framework -- 8.2.1 International Perspective -- 8.2.2 Indian Perspective -- 8.3 Bio-Medical Waste Management Remedial Measures in Select Countries -- 8.3.1 United Kingdom -- 8.3.2 Indonesia -- 8.3.3 Kenya -- 8.3.4 Sri Lanka -- 8.4 Bio-Medical Waste Management: Issues and Challenges -- References -- 9 Pandemic-Associated Biomedical Waste Management: Socio-Environmental Impact, Sustainable Strategies, and Renewable Technologies -- 9.1 Introduction -- 9.2 Sources and Types of Biomedical Waste -- 9.3 Existing Problems with BMW. 9.4 Managing Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.5 Policy Gaps -- 9.6 Environmental and Social Impact -- 9.6.1 Open Dumping -- 9.6.2 Marine Litter -- 9.6.3 Open Burning: Incineration Is a Public Health Concern -- 9.6.4 Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.6.5 Concern with Conditions of Operation in Suburbs and Remote Areas -- 9.6.6 Landfill Sites: A Source of Leachate of Water -- 9.7 Developing Resilience and Preparedness for Events in the Future by Redesigning Waste Management Systems -- 9.7.1 Capacity Building of Sanitation Workers -- 9.7.2 Role of Municipalities and NGOs -- 9.7.3 Renewable Energy Technologies -- 9.7.4 Nano-Based Technologies -- References -- 10 Environmental Concerns and Recent Advances in Management of Pandemic-Associated Biomedical Wastes: Case Studies on India and Bangladesh -- 10.1 Introduction -- 10.2 Environmental Concerns of COVID-19 Waste -- 10.2.1 Effects on Animal Health -- 10.2.2 Effects on Human Health -- 10.2.3 Effects on Environmental Sectors -- 10.3 Strategies Adopted by Countries across the Globe to Manage COVID-19 -- 10.4 COVID-19 Waste Management Scenario in India and Bangladesh -- 10.5 Future Recommendations -- References -- Index This book covers perspectives addressing the sustainable development goals through analytical and case studies on municipal and biomedical waste management. It consists of ten selectively curated highly technical chapters including practical case studies and examples Sustainable development Rajpal, Ankur Sonstige oth Goswami, Srijan Sonstige oth Chakravorty, Arghya Sonstige oth Raghavan, Vimala Sonstige oth Erscheint auch als Druck-Ausgabe Choudhury, Moharana Analytical Case Studies on Municipal and Biomedical Waste Management Boca Raton : Taylor & Francis Group,c2024 9781032796918 |
spellingShingle | Choudhury, Moharana Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals Cover -- Half Title -- Title -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- List of Contributors -- 1 Global Energy Potential of Landfill Gas -- 1.1 Introduction -- 1.1.1 Selected Global LFG to Electricity Generation Projects -- 1.1.2 Selected Global LFG to Direct Use Projects -- 1.1.3 Selected Global LFG to Flaring Projects -- 1.2 Parameters Affecting MSW Decomposition and LFG Emission in Landfills -- 1.2.1 Energy Potential of LFG per Unit of MSW -- 1.2.2 Energy Content of LFG and Methane -- 1.3 LFG and Methane Yield -- 1.3.1 LFG and Methane Yield Using Stoichiometric Method -- 1.3.2 LFG and Methane Yield Using Biodegradability Method -- 1.3.3 LFG and Methane Yield in Digester Studies -- 1.3.4 LFG and Methane Yield in Laboratory Simulation/Full-Scale Studies -- 1.4 Conclusion -- References -- 2 Global Landfill Gas Emission Models: A Critical Analysis -- 2.1 Introduction -- 2.2 Standard Protocol for LFG Recovery -- 2.2.1 Pump Test Methodology for a Typical Landfill -- 2.2.2 Static Testing of LFG -- 2.2.3 Dynamic Testing of LFG -- 2.2.4 LFG Well Adjustment Procedure -- 2.2.5 Monitoring of LFG Pressure Probes -- 2.2.6 Radius of Influence for Okhla Landfill -- 2.3 Commercial Applications of LFG -- 2.4 Model Parameters for LFG Prediction -- 2.4.1 Baseline Parameters for LFG Prediction -- 2.4.2 Secondary Parameters for LFG Prediction -- 2.5 Global LFG Models -- 2.6 Research Gaps in the Developed LFG Models -- 2.7 Conclusions -- References -- 3 Waste to Energy: A Case Study of Christ University, India -- 3.1 Introduction -- 3.2 Waste Management in Higher Educational Institutions -- 3.3 Waste Management in Christ University: A Roadmap for Sustainability -- 3.4 Sources of Waste Generation at Christ University -- 3.5 Collection of Waste -- 3.6 Segregation of Waste -- 3.7 Process of Waste Management 3.8 Outcomes Post-Recycling and Reproduction -- Beneficiaries and Community Involvement -- 3.9 The Meta Picture -- 3.10 Conclusion -- Acknowledgements -- References -- 4 Population Dynamics of Gamma Proteobacteria: Critical Analysis during Different Phases of Composting -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Field Setup -- 4.2.2 Biochemical Estimations -- 4.2.3 Determination of pH -- 4.2.4 Determination of Moisture Content (dry wt.) -- 4.2.5 Fluorescence In Situ Hybridization -- 4.2.6 Confocal Microscope -- 4.2.7 Sample Preparation for Live-Dead Cell Count -- 4.2.8 Statistical Analysis -- 4.3 Results and Discussion -- Conclusion -- Acknowledgements -- References -- 5 Critical Analysis of MoS2-Based Systems for Textile Wastewater Treatment -- 5.1 Introduction: Basic Properties and Importance of MoS2 -- 5.2 General Methods Employed for the Preparation of MoS2 and MoS2-Based Systems -- 5.2.1 Hydrothermal Approach -- 5.2.2 Exfoliation Process -- 5.2.3 Chemical Vapour Deposition -- 5.3 Characterization of MoS2 -- 5.4 Modified MoS2 Systems -- 5.4.1 Binary Systems -- 5.4.2 Ternary Systems -- 5.5 Modified MoS2 Systems for Wastewater Treatment -- 5.6 Mechanism of Degradation of Textile Dyes -- 5.6.1 Excitation: Photon Absorption -- 5.6.2 Separation: Electron-Hole Pair Formation -- 5.6.3 Dye Degradation: Advanced Oxidation Process -- 5.6.4 Photocatalytic Schemes Based on Types of Heterojunctions -- 5.7 Conclusion -- Acknowledgements -- References -- 6 Integrated Biomedical Waste Management: Critical Analysis on Sustainable Circular Economy -- 6.1 Introduction -- 6.2 COVID-19 and Solid Waste Management -- 6.2.1 Waste Management Challenges -- 6.2.2 Waste Collection -- 6.2.3 Waste Sorting, Segregation, and Storage -- 6.2.4 Transportation -- 6.2.5 Waste Processing, Treatment, and Final Disposal 6.3 Plastic Waste Management and the Role of the Circular Economy -- 6.4 Circular Economy during COVID-19 and Beyond -- 6.5 Using the Circular Economy in Conjunction with the COVID-19 Response -- 6.6 Worldwide Scenario of Medical Waste Management during COVID-19: Case Studies -- 6.6.1 India -- 6.6.2 Lebanon -- 6.6.3 Bangladesh -- 6.6.4 China -- 6.7 Conclusions -- References -- 7 Biomedical Waste Management: Critical Analysis of Occupational Safety and Concerns -- 7.1 Introduction -- 7.2 Biomedical Waste Management-Directive Policies -- 7.3 Biomedical Waste Generation and Segregation in the Pandemic Period (COVID-19) -- 7.4 Steps Involved in COVID-19-Associated Biomedical Waste Management -- 7.4.1 Step I-Segregation -- 7.4.2 Step II-Packaging -- 7.4.3 Step III-Transportation -- 7.5 COVID-19-Associated Biomedical Waste Management-Treatment Strategies -- 7.5.1 Chemical Processes -- 7.5.2 Thermal Processes -- 7.5.3 Mechanical Processes -- 7.5.4 Irradiation Processes -- 7.5.5 Biological Processes -- 7.6 Occupational Safety and Health -- 7.7 Policy and Regulatory Framework -- 7.8 Safe Handling of COVID-19-associated Biomedical Waste -- References -- 8 Biomedical Waste Management: Legal and Regulatory Framework and Remedial Strategies -- 8.1 Introduction -- 8.2 Bio-Medical Waste Management: Legal and Regulatory Framework -- 8.2.1 International Perspective -- 8.2.2 Indian Perspective -- 8.3 Bio-Medical Waste Management Remedial Measures in Select Countries -- 8.3.1 United Kingdom -- 8.3.2 Indonesia -- 8.3.3 Kenya -- 8.3.4 Sri Lanka -- 8.4 Bio-Medical Waste Management: Issues and Challenges -- References -- 9 Pandemic-Associated Biomedical Waste Management: Socio-Environmental Impact, Sustainable Strategies, and Renewable Technologies -- 9.1 Introduction -- 9.2 Sources and Types of Biomedical Waste -- 9.3 Existing Problems with BMW. 9.4 Managing Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.5 Policy Gaps -- 9.6 Environmental and Social Impact -- 9.6.1 Open Dumping -- 9.6.2 Marine Litter -- 9.6.3 Open Burning: Incineration Is a Public Health Concern -- 9.6.4 Liquid Waste and Wastewater from Hospitals and Laboratories -- 9.6.5 Concern with Conditions of Operation in Suburbs and Remote Areas -- 9.6.6 Landfill Sites: A Source of Leachate of Water -- 9.7 Developing Resilience and Preparedness for Events in the Future by Redesigning Waste Management Systems -- 9.7.1 Capacity Building of Sanitation Workers -- 9.7.2 Role of Municipalities and NGOs -- 9.7.3 Renewable Energy Technologies -- 9.7.4 Nano-Based Technologies -- References -- 10 Environmental Concerns and Recent Advances in Management of Pandemic-Associated Biomedical Wastes: Case Studies on India and Bangladesh -- 10.1 Introduction -- 10.2 Environmental Concerns of COVID-19 Waste -- 10.2.1 Effects on Animal Health -- 10.2.2 Effects on Human Health -- 10.2.3 Effects on Environmental Sectors -- 10.3 Strategies Adopted by Countries across the Globe to Manage COVID-19 -- 10.4 COVID-19 Waste Management Scenario in India and Bangladesh -- 10.5 Future Recommendations -- References -- Index Sustainable development |
title | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_auth | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_exact_search | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_full | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_fullStr | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_full_unstemmed | Analytical Case Studies on Municipal and Biomedical Waste Management Perspectives on Sustainable Development Goals |
title_short | Analytical Case Studies on Municipal and Biomedical Waste Management |
title_sort | analytical case studies on municipal and biomedical waste management perspectives on sustainable development goals |
title_sub | Perspectives on Sustainable Development Goals |
topic | Sustainable development |
topic_facet | Sustainable development |
work_keys_str_mv | AT choudhurymoharana analyticalcasestudiesonmunicipalandbiomedicalwastemanagementperspectivesonsustainabledevelopmentgoals AT rajpalankur analyticalcasestudiesonmunicipalandbiomedicalwastemanagementperspectivesonsustainabledevelopmentgoals AT goswamisrijan analyticalcasestudiesonmunicipalandbiomedicalwastemanagementperspectivesonsustainabledevelopmentgoals AT chakravortyarghya analyticalcasestudiesonmunicipalandbiomedicalwastemanagementperspectivesonsustainabledevelopmentgoals AT raghavanvimala analyticalcasestudiesonmunicipalandbiomedicalwastemanagementperspectivesonsustainabledevelopmentgoals |