Attractors for non-classical diffusion equations and Kirchhoff wave equations:
This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the author...
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Les Ulis
EDP Sciences
[2024]
© 2024 |
Series: | Current natural sciences
|
Subjects: | |
Links: | https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 https://www.degruyter.com/openurl?genre=book&isbn=9782759835393 https://doi.org/10.1051/978-2-7598-3538-6?locatt=mode:legacy https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 https://doi.org/10.1051/978-2-7598-3539-3 |
Summary: | This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the authors and their collaborators over recent years.This book has two distinguishing features. First, while there are many published works on non-classical diffusion equations in Sobolev spaces without time-dependent terms but few results in time-dependent spaces, this book fills this gap. Second, this book provides new results on the existence, regularity and upper semicontinuity of time-dependent global attractors, strong attractors, and pullback attractors in time-dependent spaces, as well as the ideas and methods for dealing with these problems that can be used in other related models. |
Physical Description: | 1 Online-Ressource (266 Seiten) |
ISBN: | 9782759835393 |
DOI: | 10.1051/978-2-7598-3539-3 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049936942 | ||
003 | DE-604 | ||
005 | 20250220 | ||
007 | cr|uuu---uuuuu | ||
008 | 241105s2024 xx o|||| 00||| eng d | ||
020 | |a 9782759835393 |c Online |9 978-2-7598-3539-3 | ||
024 | 7 | |a 10.1051/978-2-7598-3539-3 |2 doi | |
024 | 7 | |a 10.1051/978-2-7598-3538-6 |2 doi | |
035 | |a (ZDB-23-DGG)9782759835393 | ||
035 | |a (OCoLC)1466935303 | ||
035 | |a (DE-599)BVBBV049936942 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-20 |a DE-11 |a DE-703 | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Qin, Yuming |e Verfasser |0 (DE-588)1119550041 |4 aut | |
245 | 1 | 0 | |a Attractors for non-classical diffusion equations and Kirchhoff wave equations |c Bin Yang, Yuming Qin |
264 | 1 | |a Les Ulis |b EDP Sciences |c [2024] | |
264 | 1 | |c © 2024 | |
300 | |a 1 Online-Ressource (266 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Current natural sciences | |
520 | |a This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the authors and their collaborators over recent years.This book has two distinguishing features. First, while there are many published works on non-classical diffusion equations in Sobolev spaces without time-dependent terms but few results in time-dependent spaces, this book fills this gap. Second, this book provides new results on the existence, regularity and upper semicontinuity of time-dependent global attractors, strong attractors, and pullback attractors in time-dependent spaces, as well as the ideas and methods for dealing with these problems that can be used in other related models. | ||
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
700 | 1 | |a Yang, Bin |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-2-7598-3538-6 |
856 | 4 | 0 | |u https://doi.org/10.1051/978-2-7598-3539-3 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA24 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035275234 | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/openurl?genre=book&isbn=9782759835393 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3538-6?locatt=mode:legacy |l DE-703 |p ZDB-23-DMA |q ZDB-23-DMA24 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-20 |p ZDB-23-DMA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3539-3 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2838933 |
---|---|
_version_ | 1824623436573442049 |
adam_text | |
any_adam_object | |
author | Qin, Yuming Yang, Bin |
author_GND | (DE-588)1119550041 |
author_facet | Qin, Yuming Yang, Bin |
author_role | aut aut |
author_sort | Qin, Yuming |
author_variant | y q yq b y by |
building | Verbundindex |
bvnumber | BV049936942 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9782759835393 (OCoLC)1466935303 (DE-599)BVBBV049936942 |
discipline | Mathematik |
doi_str_mv | 10.1051/978-2-7598-3539-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049936942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250220</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241105s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782759835393</subfield><subfield code="c">Online</subfield><subfield code="9">978-2-7598-3539-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-3539-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-3538-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9782759835393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466935303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049936942</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qin, Yuming</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1119550041</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Attractors for non-classical diffusion equations and Kirchhoff wave equations</subfield><subfield code="c">Bin Yang, Yuming Qin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis</subfield><subfield code="b">EDP Sciences</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (266 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Current natural sciences</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the latest research on global well-posedness including asymptotic behavior of solutions to some non-classical diffusion equations with fading memories, nonlocal terms or delays in several time-dependent spaces. The results collected in this book have been established by the authors and their collaborators over recent years.This book has two distinguishing features. First, while there are many published works on non-classical diffusion equations in Sobolev spaces without time-dependent terms but few results in time-dependent spaces, this book fills this gap. Second, this book provides new results on the existence, regularity and upper semicontinuity of time-dependent global attractors, strong attractors, and pullback attractors in time-dependent spaces, as well as the ideas and methods for dealing with these problems that can be used in other related models.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-2-7598-3538-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA24</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035275234</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/openurl?genre=book&isbn=9782759835393</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3538-6?locatt=mode:legacy</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3539-3</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049936942 |
illustrated | Not Illustrated |
indexdate | 2025-02-20T17:02:02Z |
institution | BVB |
isbn | 9782759835393 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035275234 |
oclc_num | 1466935303 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-20 DE-11 DE-703 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-20 DE-11 DE-703 |
physical | 1 Online-Ressource (266 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA24 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2024 ZDB-23-DMA ZDB-23-DMA24 ZDB-23-DMA UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | EDP Sciences |
record_format | marc |
series2 | Current natural sciences |
spellingShingle | Qin, Yuming Yang, Bin Attractors for non-classical diffusion equations and Kirchhoff wave equations MATHEMATICS / General bisacsh |
title | Attractors for non-classical diffusion equations and Kirchhoff wave equations |
title_auth | Attractors for non-classical diffusion equations and Kirchhoff wave equations |
title_exact_search | Attractors for non-classical diffusion equations and Kirchhoff wave equations |
title_full | Attractors for non-classical diffusion equations and Kirchhoff wave equations Bin Yang, Yuming Qin |
title_fullStr | Attractors for non-classical diffusion equations and Kirchhoff wave equations Bin Yang, Yuming Qin |
title_full_unstemmed | Attractors for non-classical diffusion equations and Kirchhoff wave equations Bin Yang, Yuming Qin |
title_short | Attractors for non-classical diffusion equations and Kirchhoff wave equations |
title_sort | attractors for non classical diffusion equations and kirchhoff wave equations |
topic | MATHEMATICS / General bisacsh |
topic_facet | MATHEMATICS / General |
url | https://doi.org/10.1051/978-2-7598-3539-3 |
work_keys_str_mv | AT qinyuming attractorsfornonclassicaldiffusionequationsandkirchhoffwaveequations AT yangbin attractorsfornonclassicaldiffusionequationsandkirchhoffwaveequations |