Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Milton
CRC Press LLC
2024
|
Edition: | 1st ed |
Subjects: | |
Links: | https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31050164 |
Summary: | This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches |
Item Description: | Description based on publisher supplied metadata and other sources |
Physical Description: | 1 Online-Ressource (239 Seiten) |
ISBN: | 9781003829140 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049871528 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240918s2024 xx o|||| 00||| eng d | ||
020 | |a 9781003829140 |9 978-1-003-82914-0 | ||
035 | |a (ZDB-30-PQE)EBC31050164 | ||
035 | |a (ZDB-30-PAD)EBC31050164 | ||
035 | |a (ZDB-89-EBL)EBL31050164 | ||
035 | |a (OCoLC)1416747155 | ||
035 | |a (DE-599)BVBBV049871528 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 621.367 | |
100 | 1 | |a Cuevas, Erik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Image Processing and Machine Learning, Volume 2 |b Advanced Topics in Image Analysis and Machine Learning |
250 | |a 1st ed | ||
264 | 1 | |a Milton |b CRC Press LLC |c 2024 | |
264 | 4 | |c ©2024 | |
300 | |a 1 Online-Ressource (239 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface Volume II -- 1 Morphological Operations -- 1.1 Shrinkage and Growth of Structures -- 1.1.1 Neighborhood Types Between Pixels -- 1.2 Fundamental Morphological Operations -- 1.2.1 The Structure of Reference -- 1.2.2 Point Set -- 1.2.3 Dilation -- 1.2.4 Erosion -- 1.2.5 Properties of Dilatation and Erosion -- 1.2.6 Design of Morphological Filters -- 1.3 Edge Detection in Binary Images -- 1.4 Combination of Morphological Operations -- 1.4.1 Opening -- 1.4.2 Closing -- 1.4.3 Properties of the Open and Close Operations -- 1.4.4 The Hit-or-Miss Transformation -- 1.5 Morphological Filters for Grayscale Images -- 1.5.1 Reference Structure -- 1.5.2 Dilation and Erosion for Intensity Images -- 1.5.3 Open and Close Operations with Grayscale Images -- 1.5.4 Top-Hat and Bottom-Hat Transformation -- 1.6 MATLAB Functions for Morphological Operations -- 1.6.1 Strel Function -- 1.6.2 MATLAB Functions for Dilation and Erosion -- 1.6.3 MATLAB Functions Involving the Open and Close Operations -- 1.6.4 The Transformation of Success or Failure ('Hit-or-Miss') -- 1.6.5 The bwmorph Function -- 1.6.6 Labeling of Convex Components -- Notes -- References -- 2 Color Images -- 2.1 RGB Images -- 2.1.1 Composition of Color Images -- 2.1.2 Full-Color Images -- 2.1.3 Indexed Images -- 2.2 Histogram of an RGB Image -- 2.2.1 Histogram of RGB Images in MATLAB -- 2.3 Color Models and Color Space Conversions -- 2.3.1 Converting an RGB Image to Grayscale -- 2.3.2 RGB Images without Color -- 2.3.3 Reducing Saturation of a Color Image -- 2.3.4 HSV and HSL Color Model -- 2.3.5 Conversion From RGB to HSV -- 2.3.6 Conversion From HSV to RGB -- 2.3.7 Conversion From RGB to HLS -- 2.3.8 Conversion From HLS to RGB -- 2.3.9 Comparison of HSV and HSL Models -- 2.4 The YUV, YIQ, and YCbCr Color Models | |
505 | 8 | |a 2.4.1 The YUV Model -- 2.4.2 The YIQ Model -- 2.4.3 The YC[sub(b)]C[sub(r)] Model -- 2.5 Useful Color Models for Printing Images -- 2.5.1 Transformation From CMY to CMYK (Version 1) -- 2.5.2 Transformation From CMY to CMYK (Version 2) -- 2.5.3 Transformation From CMY to CMYK (Version 3) -- 2.6 Colorimetric Models -- 2.6.1 The CIEXYZ Color Space -- 2.6.2 The CIE Color Diagram -- 2.6.3 Lighting Standards -- 2.6.4 Chromatic Adaptation -- 2.6.5 The Gamut -- 2.7 Variants of the CIE Color Space -- 2.8 The CIE L*a*b* Model -- 2.8.1 Transformation CIEXYZ → L*a*b* -- 2.8.2 Transformation L*a*b* → CIEXYZ -- 2.8.3 Determination of Color Difference -- 2.9 The sRGB Model -- 2.10 MATLAB Functions for Color Image Processing -- 2.10.1 Functions for Handling RGB and Indexed Images -- 2.10.2 Functions for Color Space Conversion -- 2.11 Color Image Processing -- 2.12 Linear Color Transformations -- 2.12.1 Linear Color Transformation Using MATLAB -- 2.13 Spatial Processing in Color Images -- 2.13.1 Color Image Smoothing -- 2.13.2 Smoothing Color Images with MATLAB -- 2.13.3 Sharpness Enhancement in Color Images -- 2.13.4 Sharpening Color Images with MATLAB -- 2.14 Vector Processing of Color Images -- 2.14.1 Edge Detection in Color Images -- 2.14.2 Edge Detection in Color Images Using MATLAB -- Note -- References -- 3 Geometric Operations in Images -- 3.1 Coordinate Transformation -- 3.1.1 Simple Transformations -- 3.1.2 Homogeneous Coordinates -- 3.1.3 Affine Transformation (Triangle Transformation) -- 3.1.4 Projective Transformation -- 3.1.5 Bilinear Transformation -- 3.1.6 Other Nonlinear Geometric Transformations -- 3.2 Reassignment of Coordinates -- 3.2.1 Source-Destination Mapping -- 3.2.2 Destination-Source Mapping -- 3.3 Interpolation -- 3.3.1 Simple Interpolation Methods -- 3.3.2 Ideal Interpolation -- 3.3.3 Cubic Interpolation -- 3.4 Aliases | |
505 | 8 | |a 3.5 Functions for Geometric Transformation in MATLAB -- 3.5.1 Application Example -- References -- 4 Comparison and Recognition of Images -- 4.1 Comparison in Grayscale Images -- 4.1.1 Distance between Patterns -- 4.1.2 Distance and Correlation -- 4.1.3 The Normalized Cross-Correlation -- 4.1.4 Correlation Coefficient -- 4.2 Pattern Recognition Using the Correlation Coefficient -- 4.2.1 Implementation of the Pattern Recognition System by the Correlation Coefficient -- 4.3 Comparison of Binary Images -- 4.3.1 The Transformation of Distance -- 4.3.2 Chamfer Algorithm -- 4.4 Chamfer Index Relationship -- 4.4.1 Implementation of the Chamfer Relation Index -- References -- 5 Mean-Shift Algorithm for Segmentation -- 5.1 Introduction -- 5.2 Kernel Density Estimation (KDE) and the Mean-Shift Method -- 5.2.1 Concentration Map Generation -- 5.3 Density Attractors Points -- 5.4 Segmentation with Camshift -- 5.4.1 Feature Definition -- 5.4.2 Operative Data Set -- 5.4.3 Operation of the MS Algorithm -- 5.4.4 Inclusion of the Inactive Elements -- 5.4.5 Merging of Not Representative Groups -- 5.4.6 Computational Process -- 5.5 Results of the Segmentation Process -- 5.5.1 Experimental Setup -- 5.5.2 Performance Criterion -- 5.5.3 Comparison Results -- References -- 6 Singular Value Decomposition in Image Processing -- 6.1 Introduction -- 6.2 Computing the SVD Elements -- 6.3 Approximation of the Data Set -- 6.4 SVD for Image Compression -- 6.5 Principal Component Analysis -- 6.6 Principal Components through Covariance -- 6.7 Principal Components through Correlation -- References -- Index | |
520 | |a This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches | ||
650 | 4 | |a Business intelligence | |
700 | 1 | |a Rodríguez, Alma Nayeli |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Cuevas, Erik |t Image Processing and Machine Learning, Volume 2 |d Milton : CRC Press LLC,c2024 |z 9781032662459 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035211003 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31050164 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Record in the Search Index
_version_ | 1818992316274180096 |
---|---|
any_adam_object | |
author | Cuevas, Erik |
author_facet | Cuevas, Erik |
author_role | aut |
author_sort | Cuevas, Erik |
author_variant | e c ec |
building | Verbundindex |
bvnumber | BV049871528 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface Volume II -- 1 Morphological Operations -- 1.1 Shrinkage and Growth of Structures -- 1.1.1 Neighborhood Types Between Pixels -- 1.2 Fundamental Morphological Operations -- 1.2.1 The Structure of Reference -- 1.2.2 Point Set -- 1.2.3 Dilation -- 1.2.4 Erosion -- 1.2.5 Properties of Dilatation and Erosion -- 1.2.6 Design of Morphological Filters -- 1.3 Edge Detection in Binary Images -- 1.4 Combination of Morphological Operations -- 1.4.1 Opening -- 1.4.2 Closing -- 1.4.3 Properties of the Open and Close Operations -- 1.4.4 The Hit-or-Miss Transformation -- 1.5 Morphological Filters for Grayscale Images -- 1.5.1 Reference Structure -- 1.5.2 Dilation and Erosion for Intensity Images -- 1.5.3 Open and Close Operations with Grayscale Images -- 1.5.4 Top-Hat and Bottom-Hat Transformation -- 1.6 MATLAB Functions for Morphological Operations -- 1.6.1 Strel Function -- 1.6.2 MATLAB Functions for Dilation and Erosion -- 1.6.3 MATLAB Functions Involving the Open and Close Operations -- 1.6.4 The Transformation of Success or Failure ('Hit-or-Miss') -- 1.6.5 The bwmorph Function -- 1.6.6 Labeling of Convex Components -- Notes -- References -- 2 Color Images -- 2.1 RGB Images -- 2.1.1 Composition of Color Images -- 2.1.2 Full-Color Images -- 2.1.3 Indexed Images -- 2.2 Histogram of an RGB Image -- 2.2.1 Histogram of RGB Images in MATLAB -- 2.3 Color Models and Color Space Conversions -- 2.3.1 Converting an RGB Image to Grayscale -- 2.3.2 RGB Images without Color -- 2.3.3 Reducing Saturation of a Color Image -- 2.3.4 HSV and HSL Color Model -- 2.3.5 Conversion From RGB to HSV -- 2.3.6 Conversion From HSV to RGB -- 2.3.7 Conversion From RGB to HLS -- 2.3.8 Conversion From HLS to RGB -- 2.3.9 Comparison of HSV and HSL Models -- 2.4 The YUV, YIQ, and YCbCr Color Models 2.4.1 The YUV Model -- 2.4.2 The YIQ Model -- 2.4.3 The YC[sub(b)]C[sub(r)] Model -- 2.5 Useful Color Models for Printing Images -- 2.5.1 Transformation From CMY to CMYK (Version 1) -- 2.5.2 Transformation From CMY to CMYK (Version 2) -- 2.5.3 Transformation From CMY to CMYK (Version 3) -- 2.6 Colorimetric Models -- 2.6.1 The CIEXYZ Color Space -- 2.6.2 The CIE Color Diagram -- 2.6.3 Lighting Standards -- 2.6.4 Chromatic Adaptation -- 2.6.5 The Gamut -- 2.7 Variants of the CIE Color Space -- 2.8 The CIE L*a*b* Model -- 2.8.1 Transformation CIEXYZ → L*a*b* -- 2.8.2 Transformation L*a*b* → CIEXYZ -- 2.8.3 Determination of Color Difference -- 2.9 The sRGB Model -- 2.10 MATLAB Functions for Color Image Processing -- 2.10.1 Functions for Handling RGB and Indexed Images -- 2.10.2 Functions for Color Space Conversion -- 2.11 Color Image Processing -- 2.12 Linear Color Transformations -- 2.12.1 Linear Color Transformation Using MATLAB -- 2.13 Spatial Processing in Color Images -- 2.13.1 Color Image Smoothing -- 2.13.2 Smoothing Color Images with MATLAB -- 2.13.3 Sharpness Enhancement in Color Images -- 2.13.4 Sharpening Color Images with MATLAB -- 2.14 Vector Processing of Color Images -- 2.14.1 Edge Detection in Color Images -- 2.14.2 Edge Detection in Color Images Using MATLAB -- Note -- References -- 3 Geometric Operations in Images -- 3.1 Coordinate Transformation -- 3.1.1 Simple Transformations -- 3.1.2 Homogeneous Coordinates -- 3.1.3 Affine Transformation (Triangle Transformation) -- 3.1.4 Projective Transformation -- 3.1.5 Bilinear Transformation -- 3.1.6 Other Nonlinear Geometric Transformations -- 3.2 Reassignment of Coordinates -- 3.2.1 Source-Destination Mapping -- 3.2.2 Destination-Source Mapping -- 3.3 Interpolation -- 3.3.1 Simple Interpolation Methods -- 3.3.2 Ideal Interpolation -- 3.3.3 Cubic Interpolation -- 3.4 Aliases 3.5 Functions for Geometric Transformation in MATLAB -- 3.5.1 Application Example -- References -- 4 Comparison and Recognition of Images -- 4.1 Comparison in Grayscale Images -- 4.1.1 Distance between Patterns -- 4.1.2 Distance and Correlation -- 4.1.3 The Normalized Cross-Correlation -- 4.1.4 Correlation Coefficient -- 4.2 Pattern Recognition Using the Correlation Coefficient -- 4.2.1 Implementation of the Pattern Recognition System by the Correlation Coefficient -- 4.3 Comparison of Binary Images -- 4.3.1 The Transformation of Distance -- 4.3.2 Chamfer Algorithm -- 4.4 Chamfer Index Relationship -- 4.4.1 Implementation of the Chamfer Relation Index -- References -- 5 Mean-Shift Algorithm for Segmentation -- 5.1 Introduction -- 5.2 Kernel Density Estimation (KDE) and the Mean-Shift Method -- 5.2.1 Concentration Map Generation -- 5.3 Density Attractors Points -- 5.4 Segmentation with Camshift -- 5.4.1 Feature Definition -- 5.4.2 Operative Data Set -- 5.4.3 Operation of the MS Algorithm -- 5.4.4 Inclusion of the Inactive Elements -- 5.4.5 Merging of Not Representative Groups -- 5.4.6 Computational Process -- 5.5 Results of the Segmentation Process -- 5.5.1 Experimental Setup -- 5.5.2 Performance Criterion -- 5.5.3 Comparison Results -- References -- 6 Singular Value Decomposition in Image Processing -- 6.1 Introduction -- 6.2 Computing the SVD Elements -- 6.3 Approximation of the Data Set -- 6.4 SVD for Image Compression -- 6.5 Principal Component Analysis -- 6.6 Principal Components through Covariance -- 6.7 Principal Components through Correlation -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC31050164 (ZDB-30-PAD)EBC31050164 (ZDB-89-EBL)EBL31050164 (OCoLC)1416747155 (DE-599)BVBBV049871528 |
dewey-full | 621.367 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.367 |
dewey-search | 621.367 |
dewey-sort | 3621.367 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07085nam a2200445zc 4500</leader><controlfield tag="001">BV049871528</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240918s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003829140</subfield><subfield code="9">978-1-003-82914-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31050164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31050164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31050164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1416747155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049871528</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.367</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cuevas, Erik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image Processing and Machine Learning, Volume 2</subfield><subfield code="b">Advanced Topics in Image Analysis and Machine Learning</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">CRC Press LLC</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (239 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface Volume II -- 1 Morphological Operations -- 1.1 Shrinkage and Growth of Structures -- 1.1.1 Neighborhood Types Between Pixels -- 1.2 Fundamental Morphological Operations -- 1.2.1 The Structure of Reference -- 1.2.2 Point Set -- 1.2.3 Dilation -- 1.2.4 Erosion -- 1.2.5 Properties of Dilatation and Erosion -- 1.2.6 Design of Morphological Filters -- 1.3 Edge Detection in Binary Images -- 1.4 Combination of Morphological Operations -- 1.4.1 Opening -- 1.4.2 Closing -- 1.4.3 Properties of the Open and Close Operations -- 1.4.4 The Hit-or-Miss Transformation -- 1.5 Morphological Filters for Grayscale Images -- 1.5.1 Reference Structure -- 1.5.2 Dilation and Erosion for Intensity Images -- 1.5.3 Open and Close Operations with Grayscale Images -- 1.5.4 Top-Hat and Bottom-Hat Transformation -- 1.6 MATLAB Functions for Morphological Operations -- 1.6.1 Strel Function -- 1.6.2 MATLAB Functions for Dilation and Erosion -- 1.6.3 MATLAB Functions Involving the Open and Close Operations -- 1.6.4 The Transformation of Success or Failure ('Hit-or-Miss') -- 1.6.5 The bwmorph Function -- 1.6.6 Labeling of Convex Components -- Notes -- References -- 2 Color Images -- 2.1 RGB Images -- 2.1.1 Composition of Color Images -- 2.1.2 Full-Color Images -- 2.1.3 Indexed Images -- 2.2 Histogram of an RGB Image -- 2.2.1 Histogram of RGB Images in MATLAB -- 2.3 Color Models and Color Space Conversions -- 2.3.1 Converting an RGB Image to Grayscale -- 2.3.2 RGB Images without Color -- 2.3.3 Reducing Saturation of a Color Image -- 2.3.4 HSV and HSL Color Model -- 2.3.5 Conversion From RGB to HSV -- 2.3.6 Conversion From HSV to RGB -- 2.3.7 Conversion From RGB to HLS -- 2.3.8 Conversion From HLS to RGB -- 2.3.9 Comparison of HSV and HSL Models -- 2.4 The YUV, YIQ, and YCbCr Color Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.1 The YUV Model -- 2.4.2 The YIQ Model -- 2.4.3 The YC[sub(b)]C[sub(r)] Model -- 2.5 Useful Color Models for Printing Images -- 2.5.1 Transformation From CMY to CMYK (Version 1) -- 2.5.2 Transformation From CMY to CMYK (Version 2) -- 2.5.3 Transformation From CMY to CMYK (Version 3) -- 2.6 Colorimetric Models -- 2.6.1 The CIEXYZ Color Space -- 2.6.2 The CIE Color Diagram -- 2.6.3 Lighting Standards -- 2.6.4 Chromatic Adaptation -- 2.6.5 The Gamut -- 2.7 Variants of the CIE Color Space -- 2.8 The CIE L*a*b* Model -- 2.8.1 Transformation CIEXYZ → L*a*b* -- 2.8.2 Transformation L*a*b* → CIEXYZ -- 2.8.3 Determination of Color Difference -- 2.9 The sRGB Model -- 2.10 MATLAB Functions for Color Image Processing -- 2.10.1 Functions for Handling RGB and Indexed Images -- 2.10.2 Functions for Color Space Conversion -- 2.11 Color Image Processing -- 2.12 Linear Color Transformations -- 2.12.1 Linear Color Transformation Using MATLAB -- 2.13 Spatial Processing in Color Images -- 2.13.1 Color Image Smoothing -- 2.13.2 Smoothing Color Images with MATLAB -- 2.13.3 Sharpness Enhancement in Color Images -- 2.13.4 Sharpening Color Images with MATLAB -- 2.14 Vector Processing of Color Images -- 2.14.1 Edge Detection in Color Images -- 2.14.2 Edge Detection in Color Images Using MATLAB -- Note -- References -- 3 Geometric Operations in Images -- 3.1 Coordinate Transformation -- 3.1.1 Simple Transformations -- 3.1.2 Homogeneous Coordinates -- 3.1.3 Affine Transformation (Triangle Transformation) -- 3.1.4 Projective Transformation -- 3.1.5 Bilinear Transformation -- 3.1.6 Other Nonlinear Geometric Transformations -- 3.2 Reassignment of Coordinates -- 3.2.1 Source-Destination Mapping -- 3.2.2 Destination-Source Mapping -- 3.3 Interpolation -- 3.3.1 Simple Interpolation Methods -- 3.3.2 Ideal Interpolation -- 3.3.3 Cubic Interpolation -- 3.4 Aliases</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Functions for Geometric Transformation in MATLAB -- 3.5.1 Application Example -- References -- 4 Comparison and Recognition of Images -- 4.1 Comparison in Grayscale Images -- 4.1.1 Distance between Patterns -- 4.1.2 Distance and Correlation -- 4.1.3 The Normalized Cross-Correlation -- 4.1.4 Correlation Coefficient -- 4.2 Pattern Recognition Using the Correlation Coefficient -- 4.2.1 Implementation of the Pattern Recognition System by the Correlation Coefficient -- 4.3 Comparison of Binary Images -- 4.3.1 The Transformation of Distance -- 4.3.2 Chamfer Algorithm -- 4.4 Chamfer Index Relationship -- 4.4.1 Implementation of the Chamfer Relation Index -- References -- 5 Mean-Shift Algorithm for Segmentation -- 5.1 Introduction -- 5.2 Kernel Density Estimation (KDE) and the Mean-Shift Method -- 5.2.1 Concentration Map Generation -- 5.3 Density Attractors Points -- 5.4 Segmentation with Camshift -- 5.4.1 Feature Definition -- 5.4.2 Operative Data Set -- 5.4.3 Operation of the MS Algorithm -- 5.4.4 Inclusion of the Inactive Elements -- 5.4.5 Merging of Not Representative Groups -- 5.4.6 Computational Process -- 5.5 Results of the Segmentation Process -- 5.5.1 Experimental Setup -- 5.5.2 Performance Criterion -- 5.5.3 Comparison Results -- References -- 6 Singular Value Decomposition in Image Processing -- 6.1 Introduction -- 6.2 Computing the SVD Elements -- 6.3 Approximation of the Data Set -- 6.4 SVD for Image Compression -- 6.5 Principal Component Analysis -- 6.6 Principal Components through Covariance -- 6.7 Principal Components through Correlation -- References -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business intelligence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodríguez, Alma Nayeli</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Cuevas, Erik</subfield><subfield code="t">Image Processing and Machine Learning, Volume 2</subfield><subfield code="d">Milton : CRC Press LLC,c2024</subfield><subfield code="z">9781032662459</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035211003</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31050164</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049871528 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T20:24:13Z |
institution | BVB |
isbn | 9781003829140 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035211003 |
oclc_num | 1416747155 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (239 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | CRC Press LLC |
record_format | marc |
spelling | Cuevas, Erik Verfasser aut Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning 1st ed Milton CRC Press LLC 2024 ©2024 1 Online-Ressource (239 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface Volume II -- 1 Morphological Operations -- 1.1 Shrinkage and Growth of Structures -- 1.1.1 Neighborhood Types Between Pixels -- 1.2 Fundamental Morphological Operations -- 1.2.1 The Structure of Reference -- 1.2.2 Point Set -- 1.2.3 Dilation -- 1.2.4 Erosion -- 1.2.5 Properties of Dilatation and Erosion -- 1.2.6 Design of Morphological Filters -- 1.3 Edge Detection in Binary Images -- 1.4 Combination of Morphological Operations -- 1.4.1 Opening -- 1.4.2 Closing -- 1.4.3 Properties of the Open and Close Operations -- 1.4.4 The Hit-or-Miss Transformation -- 1.5 Morphological Filters for Grayscale Images -- 1.5.1 Reference Structure -- 1.5.2 Dilation and Erosion for Intensity Images -- 1.5.3 Open and Close Operations with Grayscale Images -- 1.5.4 Top-Hat and Bottom-Hat Transformation -- 1.6 MATLAB Functions for Morphological Operations -- 1.6.1 Strel Function -- 1.6.2 MATLAB Functions for Dilation and Erosion -- 1.6.3 MATLAB Functions Involving the Open and Close Operations -- 1.6.4 The Transformation of Success or Failure ('Hit-or-Miss') -- 1.6.5 The bwmorph Function -- 1.6.6 Labeling of Convex Components -- Notes -- References -- 2 Color Images -- 2.1 RGB Images -- 2.1.1 Composition of Color Images -- 2.1.2 Full-Color Images -- 2.1.3 Indexed Images -- 2.2 Histogram of an RGB Image -- 2.2.1 Histogram of RGB Images in MATLAB -- 2.3 Color Models and Color Space Conversions -- 2.3.1 Converting an RGB Image to Grayscale -- 2.3.2 RGB Images without Color -- 2.3.3 Reducing Saturation of a Color Image -- 2.3.4 HSV and HSL Color Model -- 2.3.5 Conversion From RGB to HSV -- 2.3.6 Conversion From HSV to RGB -- 2.3.7 Conversion From RGB to HLS -- 2.3.8 Conversion From HLS to RGB -- 2.3.9 Comparison of HSV and HSL Models -- 2.4 The YUV, YIQ, and YCbCr Color Models 2.4.1 The YUV Model -- 2.4.2 The YIQ Model -- 2.4.3 The YC[sub(b)]C[sub(r)] Model -- 2.5 Useful Color Models for Printing Images -- 2.5.1 Transformation From CMY to CMYK (Version 1) -- 2.5.2 Transformation From CMY to CMYK (Version 2) -- 2.5.3 Transformation From CMY to CMYK (Version 3) -- 2.6 Colorimetric Models -- 2.6.1 The CIEXYZ Color Space -- 2.6.2 The CIE Color Diagram -- 2.6.3 Lighting Standards -- 2.6.4 Chromatic Adaptation -- 2.6.5 The Gamut -- 2.7 Variants of the CIE Color Space -- 2.8 The CIE L*a*b* Model -- 2.8.1 Transformation CIEXYZ → L*a*b* -- 2.8.2 Transformation L*a*b* → CIEXYZ -- 2.8.3 Determination of Color Difference -- 2.9 The sRGB Model -- 2.10 MATLAB Functions for Color Image Processing -- 2.10.1 Functions for Handling RGB and Indexed Images -- 2.10.2 Functions for Color Space Conversion -- 2.11 Color Image Processing -- 2.12 Linear Color Transformations -- 2.12.1 Linear Color Transformation Using MATLAB -- 2.13 Spatial Processing in Color Images -- 2.13.1 Color Image Smoothing -- 2.13.2 Smoothing Color Images with MATLAB -- 2.13.3 Sharpness Enhancement in Color Images -- 2.13.4 Sharpening Color Images with MATLAB -- 2.14 Vector Processing of Color Images -- 2.14.1 Edge Detection in Color Images -- 2.14.2 Edge Detection in Color Images Using MATLAB -- Note -- References -- 3 Geometric Operations in Images -- 3.1 Coordinate Transformation -- 3.1.1 Simple Transformations -- 3.1.2 Homogeneous Coordinates -- 3.1.3 Affine Transformation (Triangle Transformation) -- 3.1.4 Projective Transformation -- 3.1.5 Bilinear Transformation -- 3.1.6 Other Nonlinear Geometric Transformations -- 3.2 Reassignment of Coordinates -- 3.2.1 Source-Destination Mapping -- 3.2.2 Destination-Source Mapping -- 3.3 Interpolation -- 3.3.1 Simple Interpolation Methods -- 3.3.2 Ideal Interpolation -- 3.3.3 Cubic Interpolation -- 3.4 Aliases 3.5 Functions for Geometric Transformation in MATLAB -- 3.5.1 Application Example -- References -- 4 Comparison and Recognition of Images -- 4.1 Comparison in Grayscale Images -- 4.1.1 Distance between Patterns -- 4.1.2 Distance and Correlation -- 4.1.3 The Normalized Cross-Correlation -- 4.1.4 Correlation Coefficient -- 4.2 Pattern Recognition Using the Correlation Coefficient -- 4.2.1 Implementation of the Pattern Recognition System by the Correlation Coefficient -- 4.3 Comparison of Binary Images -- 4.3.1 The Transformation of Distance -- 4.3.2 Chamfer Algorithm -- 4.4 Chamfer Index Relationship -- 4.4.1 Implementation of the Chamfer Relation Index -- References -- 5 Mean-Shift Algorithm for Segmentation -- 5.1 Introduction -- 5.2 Kernel Density Estimation (KDE) and the Mean-Shift Method -- 5.2.1 Concentration Map Generation -- 5.3 Density Attractors Points -- 5.4 Segmentation with Camshift -- 5.4.1 Feature Definition -- 5.4.2 Operative Data Set -- 5.4.3 Operation of the MS Algorithm -- 5.4.4 Inclusion of the Inactive Elements -- 5.4.5 Merging of Not Representative Groups -- 5.4.6 Computational Process -- 5.5 Results of the Segmentation Process -- 5.5.1 Experimental Setup -- 5.5.2 Performance Criterion -- 5.5.3 Comparison Results -- References -- 6 Singular Value Decomposition in Image Processing -- 6.1 Introduction -- 6.2 Computing the SVD Elements -- 6.3 Approximation of the Data Set -- 6.4 SVD for Image Compression -- 6.5 Principal Component Analysis -- 6.6 Principal Components through Covariance -- 6.7 Principal Components through Correlation -- References -- Index This book serves as a textbook for students and instructors of image processing, covering the theoretical foundations and practical applications of some of the most prevalent image processing methods and approaches Business intelligence Rodríguez, Alma Nayeli Sonstige oth Erscheint auch als Druck-Ausgabe Cuevas, Erik Image Processing and Machine Learning, Volume 2 Milton : CRC Press LLC,c2024 9781032662459 |
spellingShingle | Cuevas, Erik Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface Volume II -- 1 Morphological Operations -- 1.1 Shrinkage and Growth of Structures -- 1.1.1 Neighborhood Types Between Pixels -- 1.2 Fundamental Morphological Operations -- 1.2.1 The Structure of Reference -- 1.2.2 Point Set -- 1.2.3 Dilation -- 1.2.4 Erosion -- 1.2.5 Properties of Dilatation and Erosion -- 1.2.6 Design of Morphological Filters -- 1.3 Edge Detection in Binary Images -- 1.4 Combination of Morphological Operations -- 1.4.1 Opening -- 1.4.2 Closing -- 1.4.3 Properties of the Open and Close Operations -- 1.4.4 The Hit-or-Miss Transformation -- 1.5 Morphological Filters for Grayscale Images -- 1.5.1 Reference Structure -- 1.5.2 Dilation and Erosion for Intensity Images -- 1.5.3 Open and Close Operations with Grayscale Images -- 1.5.4 Top-Hat and Bottom-Hat Transformation -- 1.6 MATLAB Functions for Morphological Operations -- 1.6.1 Strel Function -- 1.6.2 MATLAB Functions for Dilation and Erosion -- 1.6.3 MATLAB Functions Involving the Open and Close Operations -- 1.6.4 The Transformation of Success or Failure ('Hit-or-Miss') -- 1.6.5 The bwmorph Function -- 1.6.6 Labeling of Convex Components -- Notes -- References -- 2 Color Images -- 2.1 RGB Images -- 2.1.1 Composition of Color Images -- 2.1.2 Full-Color Images -- 2.1.3 Indexed Images -- 2.2 Histogram of an RGB Image -- 2.2.1 Histogram of RGB Images in MATLAB -- 2.3 Color Models and Color Space Conversions -- 2.3.1 Converting an RGB Image to Grayscale -- 2.3.2 RGB Images without Color -- 2.3.3 Reducing Saturation of a Color Image -- 2.3.4 HSV and HSL Color Model -- 2.3.5 Conversion From RGB to HSV -- 2.3.6 Conversion From HSV to RGB -- 2.3.7 Conversion From RGB to HLS -- 2.3.8 Conversion From HLS to RGB -- 2.3.9 Comparison of HSV and HSL Models -- 2.4 The YUV, YIQ, and YCbCr Color Models 2.4.1 The YUV Model -- 2.4.2 The YIQ Model -- 2.4.3 The YC[sub(b)]C[sub(r)] Model -- 2.5 Useful Color Models for Printing Images -- 2.5.1 Transformation From CMY to CMYK (Version 1) -- 2.5.2 Transformation From CMY to CMYK (Version 2) -- 2.5.3 Transformation From CMY to CMYK (Version 3) -- 2.6 Colorimetric Models -- 2.6.1 The CIEXYZ Color Space -- 2.6.2 The CIE Color Diagram -- 2.6.3 Lighting Standards -- 2.6.4 Chromatic Adaptation -- 2.6.5 The Gamut -- 2.7 Variants of the CIE Color Space -- 2.8 The CIE L*a*b* Model -- 2.8.1 Transformation CIEXYZ → L*a*b* -- 2.8.2 Transformation L*a*b* → CIEXYZ -- 2.8.3 Determination of Color Difference -- 2.9 The sRGB Model -- 2.10 MATLAB Functions for Color Image Processing -- 2.10.1 Functions for Handling RGB and Indexed Images -- 2.10.2 Functions for Color Space Conversion -- 2.11 Color Image Processing -- 2.12 Linear Color Transformations -- 2.12.1 Linear Color Transformation Using MATLAB -- 2.13 Spatial Processing in Color Images -- 2.13.1 Color Image Smoothing -- 2.13.2 Smoothing Color Images with MATLAB -- 2.13.3 Sharpness Enhancement in Color Images -- 2.13.4 Sharpening Color Images with MATLAB -- 2.14 Vector Processing of Color Images -- 2.14.1 Edge Detection in Color Images -- 2.14.2 Edge Detection in Color Images Using MATLAB -- Note -- References -- 3 Geometric Operations in Images -- 3.1 Coordinate Transformation -- 3.1.1 Simple Transformations -- 3.1.2 Homogeneous Coordinates -- 3.1.3 Affine Transformation (Triangle Transformation) -- 3.1.4 Projective Transformation -- 3.1.5 Bilinear Transformation -- 3.1.6 Other Nonlinear Geometric Transformations -- 3.2 Reassignment of Coordinates -- 3.2.1 Source-Destination Mapping -- 3.2.2 Destination-Source Mapping -- 3.3 Interpolation -- 3.3.1 Simple Interpolation Methods -- 3.3.2 Ideal Interpolation -- 3.3.3 Cubic Interpolation -- 3.4 Aliases 3.5 Functions for Geometric Transformation in MATLAB -- 3.5.1 Application Example -- References -- 4 Comparison and Recognition of Images -- 4.1 Comparison in Grayscale Images -- 4.1.1 Distance between Patterns -- 4.1.2 Distance and Correlation -- 4.1.3 The Normalized Cross-Correlation -- 4.1.4 Correlation Coefficient -- 4.2 Pattern Recognition Using the Correlation Coefficient -- 4.2.1 Implementation of the Pattern Recognition System by the Correlation Coefficient -- 4.3 Comparison of Binary Images -- 4.3.1 The Transformation of Distance -- 4.3.2 Chamfer Algorithm -- 4.4 Chamfer Index Relationship -- 4.4.1 Implementation of the Chamfer Relation Index -- References -- 5 Mean-Shift Algorithm for Segmentation -- 5.1 Introduction -- 5.2 Kernel Density Estimation (KDE) and the Mean-Shift Method -- 5.2.1 Concentration Map Generation -- 5.3 Density Attractors Points -- 5.4 Segmentation with Camshift -- 5.4.1 Feature Definition -- 5.4.2 Operative Data Set -- 5.4.3 Operation of the MS Algorithm -- 5.4.4 Inclusion of the Inactive Elements -- 5.4.5 Merging of Not Representative Groups -- 5.4.6 Computational Process -- 5.5 Results of the Segmentation Process -- 5.5.1 Experimental Setup -- 5.5.2 Performance Criterion -- 5.5.3 Comparison Results -- References -- 6 Singular Value Decomposition in Image Processing -- 6.1 Introduction -- 6.2 Computing the SVD Elements -- 6.3 Approximation of the Data Set -- 6.4 SVD for Image Compression -- 6.5 Principal Component Analysis -- 6.6 Principal Components through Covariance -- 6.7 Principal Components through Correlation -- References -- Index Business intelligence |
title | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_auth | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_exact_search | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_full | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_fullStr | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_full_unstemmed | Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning |
title_short | Image Processing and Machine Learning, Volume 2 |
title_sort | image processing and machine learning volume 2 advanced topics in image analysis and machine learning |
title_sub | Advanced Topics in Image Analysis and Machine Learning |
topic | Business intelligence |
topic_facet | Business intelligence |
work_keys_str_mv | AT cuevaserik imageprocessingandmachinelearningvolume2advancedtopicsinimageanalysisandmachinelearning AT rodriguezalmanayeli imageprocessingandmachinelearningvolume2advancedtopicsinimageanalysisandmachinelearning |