Pattern recognition: introduction, features, classifiers and principles
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Berlin ; Boston
De Gruyter Oldenbourg
[2024]
|
Ausgabe: | 2nd Edition |
Schriftenreihe: | De Gruyter graduate
|
Schlagwörter: | |
Links: | https://www.degruyter.com/isbn/9783111339191 https://d-nb.info/1305094484/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g |
ISBN: | 9783111339191 311133919X |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049723185 | ||
003 | DE-604 | ||
005 | 20241203 | ||
007 | t| | ||
008 | 240530s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N41 |2 dnb | ||
016 | 7 | |a 1305094484 |2 DE-101 | |
020 | |a 9783111339191 |c Broschur : EUR 79.95 (DE) (freier Preis), EUR 79.95 (AT) (freier Preis) |9 978-3-11-133919-1 | ||
020 | |a 311133919X |9 3-11-133919-X | ||
024 | 3 | |a 9783111339191 | |
035 | |a (OCoLC)1443578185 | ||
035 | |a (DE-599)DNB1305094484 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-1050 |a DE-29T |a DE-703 | ||
082 | 0 | 4 | |a 006.4 |2 23/ger |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a ZN 6050 |0 (DE-625)157498: |2 rvk | ||
084 | |8 1\p |a 004 |2 23sdnb | ||
100 | 1 | |a Beyerer, Jürgen |d 1961- |e Verfasser |0 (DE-588)114116733 |4 aut | |
245 | 1 | 0 | |a Pattern recognition |b introduction, features, classifiers and principles |c Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
250 | |a 2nd Edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter Oldenbourg |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a XXV, 327 Seiten |b Illustrationen, Diagramme |c 24 cm x 17 cm, 588 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter graduate | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automation |0 (DE-588)4003957-2 |2 gnd |9 rswk-swf |
653 | |a Artificial Intelligence | ||
653 | |a Data Mining | ||
653 | |a Auotmation | ||
653 | |a Machine Learning | ||
653 | |a TB: Textbook | ||
653 | |a Artificial Intelligence; Automation; Data Mining; Machine Learning | ||
653 | |a Artificial Intelligence; Data Mining; Auotmation; Machine Learning | ||
653 | |a Automation | ||
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 0 | 2 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 2 | |a Automation |0 (DE-588)4003957-2 |D s |
689 | 1 | 3 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hagmanns, Raphael |e Verfasser |0 (DE-588)1333477430 |4 aut | |
700 | 1 | |a Stadler, Daniel |e Verfasser |0 (DE-588)1333477686 |4 aut | |
710 | 2 | |a De Gruyter Oldenbourg |0 (DE-588)1065492103 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-133941-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-133920-7 |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783111339191 |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1305094484/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20231006 |q DE-101 |u https://d-nb.info/provenance/plan#vlb | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035065532 |
Datensatz im Suchindex
_version_ | 1820959160903139328 |
---|---|
adam_text |
CONTENTS
PREFACE
-
V
PREFACE
OF
2ND
EDITION
-
VII
LIST
OF
TABLES
-
XIII
LIST
OF
FIGURES
-
XV
NOTATION
-
XIX
INTRODUCTION
-
XXIII
1
1.1
1.2
1.3
1.4
1.5
FUNDAMENTALS
AND
DEFINITIONS
-
1
GOALS
OF
PATTERN
RECOGNITION
-
1
STRUCTURE
OF
A
PATTERN
RECOGNITION
SYSTEM
-
2
ABSTRACT
VIEW
OF
PATTERN
RECOGNITION
-
4
DESIGN
OF
A
PATTERN
RECOGNITION
SYSTEM
-
5
EXERCISES
-
9
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
FEATURES
-
10
TYPES
OF
FEATURES
AND
THEIR
TRAITS
-
10
NOMINAL
SCALE
-
10
ORDINAL
SCALE
-
12
INTERVAL
SCALE
-
12
RATIO
SCALE
AND
ABSOLUTE
SCALE
-
13
FEATURE
SPACE
INSPECTION
-
13
PROJECTIONS
-
14
INTERSECTIONS
AND
SLICES
-
15
TRANSFORMATIONS
OF
THE
FEATURE
SPACE
-
17
MEASUREMENT
OF
DISTANCES
IN
THE
FEATURE
SPACE
-
17
BASIC
DEFINITIONS
-
19
ELEMENTARY
NORMS
AND
METRICS
-
20
A
METRIC
FOR
SETS
-
21
METRICS
ON
THE
ORDINAL
SCALE
-
23
THE
COSINE
DISTANCE
-
23
THE
KULLBACK-LEIBLER
DIVERGENCE
-
24
THE
T-DISTRIBUTED
STOCHASTIC
NEIGHBOR
EMBEDDING
-
29
TANGENTIAL
DISTANCE
MEASURE
-
31
X
-
CONTENTS
2.5
2.5.1
NORMALIZATION
-
34
ALIGNMENT,
ELIMINATION
OF
PHYSICAL
DIMENSION,
AND
LEVELING
OF
PROPORTIONS
-
35
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7
2.7.8
2.8
LIGHTING
ADJUSTMENT
OF
IMAGES
-
35
DISTORTION
ADJUSTMENT
OF
IMAGES
-
39
DYNAMIC
TIME
WARPING
-
40
SELECTION
AND
CONSTRUCTION
OF
FEATURES
-
41
DESCRIPTIVE
FEATURES
-
41
MODEL-DRIVEN
FEATURES
-
45
CONSTRUCTION
OF
INVARIANT
FEATURES
-
50
DIMENSIONALITY
REDUCTION
OF
THE
FEATURE
SPACE
-
59
PRINCIPAL
COMPONENT
ANALYSIS
-
60
KERNELIZED
PRINCIPAL
COMPONENT
ANALYSIS
-
73
INDEPENDENT
COMPONENT
ANALYSIS
-
79
MULTIPLE
DISCRIMINANT
ANALYSIS
-
83
DIMENSIONALITY
REDUCTION
WITH
T-SNE
-
90
AUTOENCODER
-
91
DIMENSIONALITY
REDUCTION
BY
FEATURE
SELECTION
-
92
BAG
OF
WORDS
-
94
EXERCISES
-
99
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
3.5
BAYESIAN
DECISION
THEORY
-
103
GENERAL
CONSIDERATIONS
-
103
THE
MAXIMUM
A
POSTERIORI
CLASSIFIER
-
106
BAYESIAN
CLASSIFICATION
-
109
THE
BAYESIAN
OPTIMAL
CLASSIFIER
-
109
REFERENCE
EXAMPLE:
OPTIMAL
DECISION
REGIONS
-
114
THE
NAIVE
BAYES
CLASSIFIER
-
116
THE
MINIMAX
CLASSIFIER
-
118
NORMALLY
DISTRIBUTED
FEATURES
-
120
ARBITRARILY
DISTRIBUTED
FEATURES
-
125
GAUSSIAN
MIXTURES
-
126
EXERCISES
-
129
4
4.1
4.2
4.3
4.3.1
4.3.2
4.4
PARAMETER
ESTIMATION
-
132
MAXIMUM
LIKELIHOOD
ESTIMATION
-
140
BAYESIAN
ESTIMATION
OF
THE
CLASS-SPECIFIC
DISTRIBUTIONS
-
142
BAYESIAN
PARAMETER
ESTIMATION
-
147
LEAST
SQUARED
ESTIMATION
ERROR
-
148
CONSTANT
PENALTY
FOR
FAILURES
-
148
ADDITIONAL
REMARKS
ON
BAYESIAN
CLASSIFICATION
-
149
4.5
4.6
PARAMETER
ESTIMATION
FOR
GAUSSIAN
MIXTURES
-
150
EXERCISES
-
159
5
5.1
5.2
5.3
5.4
PARAMETER
FREE
METHODS
-
161
THE
PARZEN
WINDOW
METHOD
-
165
THE
K-NEAREST
NEIGHBOR
METHOD
-
169
K-NEAREST
NEIGHBOR
CLASSIFICATION
-
173
EXERCISES
-
179
6
6.1
6.2
6.3
GENERAL
CONSIDERATIONS
-
180
DIMENSIONALITY
OF
THE
FEATURE
SPACE
-
180
OVERFITTING
-
187
EXERCISES
-
190
7
7.1
7.1.1
7.1.2
7.2
7.3
7.4
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6
7.8
7.9
7.9.1
SPECIAL
CLASSIFIERS
-
191
LINEAR
DISCRIMINANTS
-
191
MORE
THAN
TWO
CLASSES
-
191
NONLINEAR
SEPARATION
-
193
THE
PERCEPTRON
-
195
LINEAR
REGRESSION
-
197
ARTIFICIAL
NEURAL
NETWORKS
-
198
AUTOENCODERS
-
204
DEEP
LEARNING
-
206
HISTORICAL
DIFFICULTIES
AND
SUCCESSFUL
APPROACHES
-
207
UNSUPERVISED
PRE-TRAINING
-
208
STOCHASTIC
GRADIENT
DESCENT
-
208
RECTIFIED
LINEAR
UNITS
-
210
CONVOLUTIONAL
NEURAL
NETWORKS
-
210
RESIDUAL
NETWORKS
-
215
VARIATIONAL
AUTOENCODERS
-
216
MIXTURE
DENSITY
NETWORKS
-
217
SUPPORT
VECTOR
MACHINES
-
219
LINEAR
SEPARATION
WITH
MAXIMUM
MARGIN
-
219
DUAL
FORMULATION
-
221
NONLINEAR
MAPPING
-
223
THE
KERNEL
TRICK
-
224
NO
LINEAR
SEPARABILITY
-
228
DISCUSSION
-
230
MATCHED
FILTERS
-
231
CLASSIFICATION
OF
SEQUENCES
-
234
MARKOV
MODELS
-
235
XII
-
-
CONTENTS
7.9.2
HIDDEN
MARKOV
MODELS
-
236
7.9.3
RECURRENT
NEURAL
NETWORKS
-
246
7.9.4
TRANSFORMERS
-
249
7.9.5
GENERATIVE
ADVERSARIAL
NETWORKS
-
252
7.10
EXERCISES
-
255
8
CLASSIFICATION
WITH
NOMINAL
FEATURES
-
257
8.1
DECISION
TREES
-
257
8.1.1
DECISION
TREE
LEARNING
-
260
8.1.2
INFLUENCE
OF
THE
FEATURES
USED
-
264
8.2
RANDOM
FORESTS
-
265
8.3
STRING
MATCHING
-
269
8.4
GRAMMARS
-
270
8.5
EXERCISES
-
271
9
CLASSIFIER-INDEPENDENT
CONCEPTS
-
273
9.1
LEARNING
THEORY
-
273
9.1.1
THE
CENTRAL
PROBLEM
OF
STATISTICAL
LEARNING
-
274
9.1.2
VAPNIK-CHERVONENKIS
LEARNING
THEORY
-
274
9.2
NO-FREE-LUNCH
THEOREM
-
277
9.3
EMPIRICAL
EVALUATION
OF
CLASSIFIER
PERFORMANCE
-
278
9.3.1
RECEIVER
OPERATING
CHARACTERISTIC
-
281
9.3.2
MULTI-CLASS
SETTING
-
282
9.3.3
THEORETICAL
BOUNDS
WITH
FINITE
TEST
SETS
-
283
9.3.4
DEALING
WITH
SMALL
DATASETS
-
284
9.4
BOOSTING
-
286
9.5
REJECTION
-
288
9.6
EXERCISES
-
291
A
SOLUTIONS
TO
THE
EXERCISES
-
293
B
A
PRIMER
ON
LIE
THEORY
-
307
C
RANDOM
PROCESSES
-
311
BIBLIOGRAPHY
-
315
GLOSSARY
-
319
INDEX
-
325 |
any_adam_object | 1 |
author | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel |
author_GND | (DE-588)114116733 (DE-588)1333477430 (DE-588)1333477686 |
author_facet | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel |
author_role | aut aut aut |
author_sort | Beyerer, Jürgen 1961- |
author_variant | j b jb r h rh d s ds |
building | Verbundindex |
bvnumber | BV049723185 |
classification_rvk | ST 330 ZN 6050 |
ctrlnum | (OCoLC)1443578185 (DE-599)DNB1305094484 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2nd Edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049723185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241203</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240530s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N41</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1305094484</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111339191</subfield><subfield code="c">Broschur : EUR 79.95 (DE) (freier Preis), EUR 79.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-133919-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311133919X</subfield><subfield code="9">3-11-133919-X</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783111339191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1443578185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1305094484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">006.4</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beyerer, Jürgen</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114116733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition</subfield><subfield code="b">introduction, features, classifiers and principles</subfield><subfield code="c">Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter Oldenbourg</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 327 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm, 588 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter graduate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Auotmation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TB: Textbook</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence; Automation; Data Mining; Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence; Data Mining; Auotmation; Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagmanns, Raphael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1333477430</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1333477686</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">De Gruyter Oldenbourg</subfield><subfield code="0">(DE-588)1065492103</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-133941-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-133920-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783111339191</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1305094484/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20231006</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035065532</subfield></datafield></record></collection> |
id | DE-604.BV049723185 |
illustrated | Illustrated |
indexdate | 2025-01-11T13:26:22Z |
institution | BVB |
institution_GND | (DE-588)1065492103 |
isbn | 9783111339191 311133919X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035065532 |
oclc_num | 1443578185 |
open_access_boolean | |
owner | DE-20 DE-1050 DE-29T DE-703 |
owner_facet | DE-20 DE-1050 DE-29T DE-703 |
physical | XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter Oldenbourg |
record_format | marc |
series2 | De Gruyter graduate |
spelling | Beyerer, Jürgen 1961- Verfasser (DE-588)114116733 aut Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler 2nd Edition Berlin ; Boston De Gruyter Oldenbourg [2024] © 2024 XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g txt rdacontent n rdamedia nc rdacarrier De Gruyter graduate Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Merkmalsextraktion (DE-588)4314440-8 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Automation (DE-588)4003957-2 gnd rswk-swf Artificial Intelligence Data Mining Auotmation Machine Learning TB: Textbook Artificial Intelligence; Automation; Data Mining; Machine Learning Artificial Intelligence; Data Mining; Auotmation; Machine Learning Automation Mustererkennung (DE-588)4040936-3 s Merkmalsextraktion (DE-588)4314440-8 s Automatische Klassifikation (DE-588)4120957-6 s DE-604 Künstliche Intelligenz (DE-588)4033447-8 s Data Mining (DE-588)4428654-5 s Automation (DE-588)4003957-2 s Maschinelles Lernen (DE-588)4193754-5 s Hagmanns, Raphael Verfasser (DE-588)1333477430 aut Stadler, Daniel Verfasser (DE-588)1333477686 aut De Gruyter Oldenbourg (DE-588)1065492103 pbl Erscheint auch als Online-Ausgabe, EPUB 978-3-11-133941-2 Erscheint auch als Online-Ausgabe, PDF 978-3-11-133920-7 X:MVB https://www.degruyter.com/isbn/9783111339191 B:DE-101 application/pdf https://d-nb.info/1305094484/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20231006 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel Pattern recognition introduction, features, classifiers and principles Künstliche Intelligenz (DE-588)4033447-8 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Data Mining (DE-588)4428654-5 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Automation (DE-588)4003957-2 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)4314440-8 (DE-588)4428654-5 (DE-588)4120957-6 (DE-588)4040936-3 (DE-588)4193754-5 (DE-588)4003957-2 |
title | Pattern recognition introduction, features, classifiers and principles |
title_auth | Pattern recognition introduction, features, classifiers and principles |
title_exact_search | Pattern recognition introduction, features, classifiers and principles |
title_full | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_fullStr | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_full_unstemmed | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_short | Pattern recognition |
title_sort | pattern recognition introduction features classifiers and principles |
title_sub | introduction, features, classifiers and principles |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Data Mining (DE-588)4428654-5 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Automation (DE-588)4003957-2 gnd |
topic_facet | Künstliche Intelligenz Merkmalsextraktion Data Mining Automatische Klassifikation Mustererkennung Maschinelles Lernen Automation |
url | https://www.degruyter.com/isbn/9783111339191 https://d-nb.info/1305094484/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT beyererjurgen patternrecognitionintroductionfeaturesclassifiersandprinciples AT hagmannsraphael patternrecognitionintroductionfeaturesclassifiersandprinciples AT stadlerdaniel patternrecognitionintroductionfeaturesclassifiersandprinciples AT degruyteroldenbourg patternrecognitionintroductionfeaturesclassifiersandprinciples |