Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Pattern recognition
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Pattern recognition: introduction, features, classifiers and principles
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Beyerer, Jürgen 1961- (VerfasserIn), Hagmanns, Raphael (VerfasserIn), Stadler, Daniel (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Berlin ; Boston De Gruyter Oldenbourg [2024]
Ausgabe:2nd Edition
Schriftenreihe:De Gruyter graduate
Schlagwörter:
Künstliche Intelligenz
Merkmalsextraktion
Data Mining
Automatische Klassifikation
Mustererkennung
Maschinelles Lernen
Automation
Artificial Intelligence
Auotmation
Machine Learning
TB: Textbook
Artificial Intelligence; Automation; Data Mining; Machine Learning
Artificial Intelligence; Data Mining; Auotmation; Machine Learning
Links:https://www.degruyter.com/isbn/9783111339191
https://d-nb.info/1305094484/04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g
ISBN:9783111339191
311133919X
Internformat

MARC

LEADER 00000nam a22000008c 4500
001 BV049723185
003 DE-604
005 20241203
007 t|
008 240530s2024 gw a||| |||| 00||| eng d
015 |a 23,N41  |2 dnb 
016 7 |a 1305094484  |2 DE-101 
020 |a 9783111339191  |c Broschur : EUR 79.95 (DE) (freier Preis), EUR 79.95 (AT) (freier Preis)  |9 978-3-11-133919-1 
020 |a 311133919X  |9 3-11-133919-X 
024 3 |a 9783111339191 
035 |a (OCoLC)1443578185 
035 |a (DE-599)DNB1305094484 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-20  |a DE-1050  |a DE-29T  |a DE-703 
082 0 4 |a 006.4  |2 23/ger 
084 |a ST 330  |0 (DE-625)143663:  |2 rvk 
084 |a ZN 6050  |0 (DE-625)157498:  |2 rvk 
084 |8 1\p  |a 004  |2 23sdnb 
100 1 |a Beyerer, Jürgen  |d 1961-  |e Verfasser  |0 (DE-588)114116733  |4 aut 
245 1 0 |a Pattern recognition  |b introduction, features, classifiers and principles  |c Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler 
250 |a 2nd Edition 
264 1 |a Berlin ; Boston  |b De Gruyter Oldenbourg  |c [2024] 
264 4 |c © 2024 
300 |a XXV, 327 Seiten  |b Illustrationen, Diagramme  |c 24 cm x 17 cm, 588 g 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a De Gruyter graduate 
650 0 7 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Merkmalsextraktion  |0 (DE-588)4314440-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Automatische Klassifikation  |0 (DE-588)4120957-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Mustererkennung  |0 (DE-588)4040936-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Automation  |0 (DE-588)4003957-2  |2 gnd  |9 rswk-swf 
653 |a Artificial Intelligence 
653 |a Data Mining 
653 |a Auotmation 
653 |a Machine Learning 
653 |a TB: Textbook 
653 |a Artificial Intelligence; Automation; Data Mining; Machine Learning 
653 |a Artificial Intelligence; Data Mining; Auotmation; Machine Learning 
653 |a Automation 
689 0 0 |a Mustererkennung  |0 (DE-588)4040936-3  |D s 
689 0 1 |a Merkmalsextraktion  |0 (DE-588)4314440-8  |D s 
689 0 2 |a Automatische Klassifikation  |0 (DE-588)4120957-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |D s 
689 1 1 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 1 2 |a Automation  |0 (DE-588)4003957-2  |D s 
689 1 3 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 1 |5 DE-604 
700 1 |a Hagmanns, Raphael  |e Verfasser  |0 (DE-588)1333477430  |4 aut 
700 1 |a Stadler, Daniel  |e Verfasser  |0 (DE-588)1333477686  |4 aut 
710 2 |a De Gruyter Oldenbourg  |0 (DE-588)1065492103  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-3-11-133941-2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, PDF  |z 978-3-11-133920-7 
856 4 2 |m X:MVB  |u https://www.degruyter.com/isbn/9783111339191 
856 4 2 |m B:DE-101  |q application/pdf  |u https://d-nb.info/1305094484/04  |3 Inhaltsverzeichnis 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a vlb  |d 20231006  |q DE-101  |u https://d-nb.info/provenance/plan#vlb 
943 1 |a oai:aleph.bib-bvb.de:BVB01-035065532 

Datensatz im Suchindex

_version_ 1820959160903139328
adam_text CONTENTS PREFACE - V PREFACE OF 2ND EDITION - VII LIST OF TABLES - XIII LIST OF FIGURES - XV NOTATION - XIX INTRODUCTION - XXIII 1 1.1 1.2 1.3 1.4 1.5 FUNDAMENTALS AND DEFINITIONS - 1 GOALS OF PATTERN RECOGNITION - 1 STRUCTURE OF A PATTERN RECOGNITION SYSTEM - 2 ABSTRACT VIEW OF PATTERN RECOGNITION - 4 DESIGN OF A PATTERN RECOGNITION SYSTEM - 5 EXERCISES - 9 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 FEATURES - 10 TYPES OF FEATURES AND THEIR TRAITS - 10 NOMINAL SCALE - 10 ORDINAL SCALE - 12 INTERVAL SCALE - 12 RATIO SCALE AND ABSOLUTE SCALE - 13 FEATURE SPACE INSPECTION - 13 PROJECTIONS - 14 INTERSECTIONS AND SLICES - 15 TRANSFORMATIONS OF THE FEATURE SPACE - 17 MEASUREMENT OF DISTANCES IN THE FEATURE SPACE - 17 BASIC DEFINITIONS - 19 ELEMENTARY NORMS AND METRICS - 20 A METRIC FOR SETS - 21 METRICS ON THE ORDINAL SCALE - 23 THE COSINE DISTANCE - 23 THE KULLBACK-LEIBLER DIVERGENCE - 24 THE T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING - 29 TANGENTIAL DISTANCE MEASURE - 31 X - CONTENTS 2.5 2.5.1 NORMALIZATION - 34 ALIGNMENT, ELIMINATION OF PHYSICAL DIMENSION, AND LEVELING OF PROPORTIONS - 35 2.5.2 2.5.3 2.5.4 2.6 2.6.1 2.6.2 2.6.3 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.8 LIGHTING ADJUSTMENT OF IMAGES - 35 DISTORTION ADJUSTMENT OF IMAGES - 39 DYNAMIC TIME WARPING - 40 SELECTION AND CONSTRUCTION OF FEATURES - 41 DESCRIPTIVE FEATURES - 41 MODEL-DRIVEN FEATURES - 45 CONSTRUCTION OF INVARIANT FEATURES - 50 DIMENSIONALITY REDUCTION OF THE FEATURE SPACE - 59 PRINCIPAL COMPONENT ANALYSIS - 60 KERNELIZED PRINCIPAL COMPONENT ANALYSIS - 73 INDEPENDENT COMPONENT ANALYSIS - 79 MULTIPLE DISCRIMINANT ANALYSIS - 83 DIMENSIONALITY REDUCTION WITH T-SNE - 90 AUTOENCODER - 91 DIMENSIONALITY REDUCTION BY FEATURE SELECTION - 92 BAG OF WORDS - 94 EXERCISES - 99 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 3.5 BAYESIAN DECISION THEORY - 103 GENERAL CONSIDERATIONS - 103 THE MAXIMUM A POSTERIORI CLASSIFIER - 106 BAYESIAN CLASSIFICATION - 109 THE BAYESIAN OPTIMAL CLASSIFIER - 109 REFERENCE EXAMPLE: OPTIMAL DECISION REGIONS - 114 THE NAIVE BAYES CLASSIFIER - 116 THE MINIMAX CLASSIFIER - 118 NORMALLY DISTRIBUTED FEATURES - 120 ARBITRARILY DISTRIBUTED FEATURES - 125 GAUSSIAN MIXTURES - 126 EXERCISES - 129 4 4.1 4.2 4.3 4.3.1 4.3.2 4.4 PARAMETER ESTIMATION - 132 MAXIMUM LIKELIHOOD ESTIMATION - 140 BAYESIAN ESTIMATION OF THE CLASS-SPECIFIC DISTRIBUTIONS - 142 BAYESIAN PARAMETER ESTIMATION - 147 LEAST SQUARED ESTIMATION ERROR - 148 CONSTANT PENALTY FOR FAILURES - 148 ADDITIONAL REMARKS ON BAYESIAN CLASSIFICATION - 149 4.5 4.6 PARAMETER ESTIMATION FOR GAUSSIAN MIXTURES - 150 EXERCISES - 159 5 5.1 5.2 5.3 5.4 PARAMETER FREE METHODS - 161 THE PARZEN WINDOW METHOD - 165 THE K-NEAREST NEIGHBOR METHOD - 169 K-NEAREST NEIGHBOR CLASSIFICATION - 173 EXERCISES - 179 6 6.1 6.2 6.3 GENERAL CONSIDERATIONS - 180 DIMENSIONALITY OF THE FEATURE SPACE - 180 OVERFITTING - 187 EXERCISES - 190 7 7.1 7.1.1 7.1.2 7.2 7.3 7.4 7.5 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 7.6.6 7.6.7 7.6.8 7.7 7.7.1 7.7.2 7.7.3 7.7.4 7.7.5 7.7.6 7.8 7.9 7.9.1 SPECIAL CLASSIFIERS - 191 LINEAR DISCRIMINANTS - 191 MORE THAN TWO CLASSES - 191 NONLINEAR SEPARATION - 193 THE PERCEPTRON - 195 LINEAR REGRESSION - 197 ARTIFICIAL NEURAL NETWORKS - 198 AUTOENCODERS - 204 DEEP LEARNING - 206 HISTORICAL DIFFICULTIES AND SUCCESSFUL APPROACHES - 207 UNSUPERVISED PRE-TRAINING - 208 STOCHASTIC GRADIENT DESCENT - 208 RECTIFIED LINEAR UNITS - 210 CONVOLUTIONAL NEURAL NETWORKS - 210 RESIDUAL NETWORKS - 215 VARIATIONAL AUTOENCODERS - 216 MIXTURE DENSITY NETWORKS - 217 SUPPORT VECTOR MACHINES - 219 LINEAR SEPARATION WITH MAXIMUM MARGIN - 219 DUAL FORMULATION - 221 NONLINEAR MAPPING - 223 THE KERNEL TRICK - 224 NO LINEAR SEPARABILITY - 228 DISCUSSION - 230 MATCHED FILTERS - 231 CLASSIFICATION OF SEQUENCES - 234 MARKOV MODELS - 235 XII - - CONTENTS 7.9.2 HIDDEN MARKOV MODELS - 236 7.9.3 RECURRENT NEURAL NETWORKS - 246 7.9.4 TRANSFORMERS - 249 7.9.5 GENERATIVE ADVERSARIAL NETWORKS - 252 7.10 EXERCISES - 255 8 CLASSIFICATION WITH NOMINAL FEATURES - 257 8.1 DECISION TREES - 257 8.1.1 DECISION TREE LEARNING - 260 8.1.2 INFLUENCE OF THE FEATURES USED - 264 8.2 RANDOM FORESTS - 265 8.3 STRING MATCHING - 269 8.4 GRAMMARS - 270 8.5 EXERCISES - 271 9 CLASSIFIER-INDEPENDENT CONCEPTS - 273 9.1 LEARNING THEORY - 273 9.1.1 THE CENTRAL PROBLEM OF STATISTICAL LEARNING - 274 9.1.2 VAPNIK-CHERVONENKIS LEARNING THEORY - 274 9.2 NO-FREE-LUNCH THEOREM - 277 9.3 EMPIRICAL EVALUATION OF CLASSIFIER PERFORMANCE - 278 9.3.1 RECEIVER OPERATING CHARACTERISTIC - 281 9.3.2 MULTI-CLASS SETTING - 282 9.3.3 THEORETICAL BOUNDS WITH FINITE TEST SETS - 283 9.3.4 DEALING WITH SMALL DATASETS - 284 9.4 BOOSTING - 286 9.5 REJECTION - 288 9.6 EXERCISES - 291 A SOLUTIONS TO THE EXERCISES - 293 B A PRIMER ON LIE THEORY - 307 C RANDOM PROCESSES - 311 BIBLIOGRAPHY - 315 GLOSSARY - 319 INDEX - 325
any_adam_object 1
author Beyerer, Jürgen 1961-
Hagmanns, Raphael
Stadler, Daniel
author_GND (DE-588)114116733
(DE-588)1333477430
(DE-588)1333477686
author_facet Beyerer, Jürgen 1961-
Hagmanns, Raphael
Stadler, Daniel
author_role aut
aut
aut
author_sort Beyerer, Jürgen 1961-
author_variant j b jb
r h rh
d s ds
building Verbundindex
bvnumber BV049723185
classification_rvk ST 330
ZN 6050
ctrlnum (OCoLC)1443578185
(DE-599)DNB1305094484
dewey-full 006.4
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.4
dewey-search 006.4
dewey-sort 16.4
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Elektrotechnik / Elektronik / Nachrichtentechnik
edition 2nd Edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049723185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241203</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240530s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N41</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1305094484</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111339191</subfield><subfield code="c">Broschur : EUR 79.95 (DE) (freier Preis), EUR 79.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-133919-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311133919X</subfield><subfield code="9">3-11-133919-X</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783111339191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1443578185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1305094484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">006.4</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beyerer, Jürgen</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114116733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition</subfield><subfield code="b">introduction, features, classifiers and principles</subfield><subfield code="c">Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter Oldenbourg</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 327 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm, 588 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter graduate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Auotmation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TB: Textbook</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence; Automation; Data Mining; Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence; Data Mining; Auotmation; Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagmanns, Raphael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1333477430</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1333477686</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">De Gruyter Oldenbourg</subfield><subfield code="0">(DE-588)1065492103</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-133941-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-133920-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783111339191</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1305094484/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=035065532&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20231006</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035065532</subfield></datafield></record></collection>
id DE-604.BV049723185
illustrated Illustrated
indexdate 2025-01-11T13:26:22Z
institution BVB
institution_GND (DE-588)1065492103
isbn 9783111339191
311133919X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-035065532
oclc_num 1443578185
open_access_boolean
owner DE-20
DE-1050
DE-29T
DE-703
owner_facet DE-20
DE-1050
DE-29T
DE-703
physical XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher De Gruyter Oldenbourg
record_format marc
series2 De Gruyter graduate
spelling Beyerer, Jürgen 1961- Verfasser (DE-588)114116733 aut
Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler
2nd Edition
Berlin ; Boston De Gruyter Oldenbourg [2024]
© 2024
XXV, 327 Seiten Illustrationen, Diagramme 24 cm x 17 cm, 588 g
txt rdacontent
n rdamedia
nc rdacarrier
De Gruyter graduate
Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf
Merkmalsextraktion (DE-588)4314440-8 gnd rswk-swf
Data Mining (DE-588)4428654-5 gnd rswk-swf
Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf
Mustererkennung (DE-588)4040936-3 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Automation (DE-588)4003957-2 gnd rswk-swf
Artificial Intelligence
Data Mining
Auotmation
Machine Learning
TB: Textbook
Artificial Intelligence; Automation; Data Mining; Machine Learning
Artificial Intelligence; Data Mining; Auotmation; Machine Learning
Automation
Mustererkennung (DE-588)4040936-3 s
Merkmalsextraktion (DE-588)4314440-8 s
Automatische Klassifikation (DE-588)4120957-6 s
DE-604
Künstliche Intelligenz (DE-588)4033447-8 s
Data Mining (DE-588)4428654-5 s
Automation (DE-588)4003957-2 s
Maschinelles Lernen (DE-588)4193754-5 s
Hagmanns, Raphael Verfasser (DE-588)1333477430 aut
Stadler, Daniel Verfasser (DE-588)1333477686 aut
De Gruyter Oldenbourg (DE-588)1065492103 pbl
Erscheint auch als Online-Ausgabe, EPUB 978-3-11-133941-2
Erscheint auch als Online-Ausgabe, PDF 978-3-11-133920-7
X:MVB https://www.degruyter.com/isbn/9783111339191
B:DE-101 application/pdf https://d-nb.info/1305094484/04 Inhaltsverzeichnis
DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
1\p vlb 20231006 DE-101 https://d-nb.info/provenance/plan#vlb
spellingShingle Beyerer, Jürgen 1961-
Hagmanns, Raphael
Stadler, Daniel
Pattern recognition introduction, features, classifiers and principles
Künstliche Intelligenz (DE-588)4033447-8 gnd
Merkmalsextraktion (DE-588)4314440-8 gnd
Data Mining (DE-588)4428654-5 gnd
Automatische Klassifikation (DE-588)4120957-6 gnd
Mustererkennung (DE-588)4040936-3 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Automation (DE-588)4003957-2 gnd
subject_GND (DE-588)4033447-8
(DE-588)4314440-8
(DE-588)4428654-5
(DE-588)4120957-6
(DE-588)4040936-3
(DE-588)4193754-5
(DE-588)4003957-2
title Pattern recognition introduction, features, classifiers and principles
title_auth Pattern recognition introduction, features, classifiers and principles
title_exact_search Pattern recognition introduction, features, classifiers and principles
title_full Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler
title_fullStr Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler
title_full_unstemmed Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler
title_short Pattern recognition
title_sort pattern recognition introduction features classifiers and principles
title_sub introduction, features, classifiers and principles
topic Künstliche Intelligenz (DE-588)4033447-8 gnd
Merkmalsextraktion (DE-588)4314440-8 gnd
Data Mining (DE-588)4428654-5 gnd
Automatische Klassifikation (DE-588)4120957-6 gnd
Mustererkennung (DE-588)4040936-3 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Automation (DE-588)4003957-2 gnd
topic_facet Künstliche Intelligenz
Merkmalsextraktion
Data Mining
Automatische Klassifikation
Mustererkennung
Maschinelles Lernen
Automation
url https://www.degruyter.com/isbn/9783111339191
https://d-nb.info/1305094484/04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=035065532&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT beyererjurgen patternrecognitionintroductionfeaturesclassifiersandprinciples
AT hagmannsraphael patternrecognitionintroductionfeaturesclassifiersandprinciples
AT stadlerdaniel patternrecognitionintroductionfeaturesclassifiersandprinciples
AT degruyteroldenbourg patternrecognitionintroductionfeaturesclassifiersandprinciples
  • Verfügbarkeit

‌

Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt