Pattern recognition: introduction, features, classifiers and principles
The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features: their typology, their properties and their systemati...
Saved in:
Main Authors: | , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin ; Boston
De Gruyter Oldenbourg
[2024]
|
Edition: | 2nd edition |
Series: | De Gruyter Textbook
|
Subjects: | |
Links: | https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://www.degruyter.com/document/isbn/9783111339207/html https://www.degruyter.com/document/isbn/9783111339207/html https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 https://doi.org/10.1515/9783111339207 |
Summary: | The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features: their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors' point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book |
Physical Description: | 1 Online-Ressource (XXV, 327 Seiten) |
ISBN: | 9783111339207 9783111339412 |
DOI: | 10.1515/9783111339207 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049653266 | ||
003 | DE-604 | ||
005 | 20241211 | ||
007 | cr|uuu---uuuuu | ||
008 | 240417s2024 xx o|||| 00||| eng d | ||
020 | |a 9783111339207 |c PDF |9 978-3-11-133920-7 | ||
020 | |a 9783111339412 |c ePub |9 978-3-11-133941-2 | ||
024 | 7 | |a 10.1515/9783111339207 |2 doi | |
035 | |a (ZDB-23-DGG)9783111339207 | ||
035 | |a (OCoLC)1430766777 | ||
035 | |a (DE-599)BVBBV049653266 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-863 |a DE-862 |a DE-M347 |a DE-11 |a DE-706 |a DE-91 |a DE-898 | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a ZN 6050 |0 (DE-625)157498: |2 rvk | ||
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Beyerer, Jürgen |d 1961- |e Verfasser |0 (DE-588)114116733 |4 aut | |
245 | 1 | 0 | |a Pattern recognition |b introduction, features, classifiers and principles |c Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter Oldenbourg |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a 1 Online-Ressource (XXV, 327 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
520 | |a The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features: their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors' point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book | ||
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automation |0 (DE-588)4003957-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 2 | |a Automation |0 (DE-588)4003957-2 |D s |
689 | 0 | 3 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 1 | 1 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 1 | 2 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hagmanns, Raphael |e Verfasser |4 aut | |
700 | 1 | |a Stadler, Daniel |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-133919-1 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783111339207 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DEI | ||
912 | |a ZDB-23-OTI | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034996669 | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-M347 |p ZDB-23-OTI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-898 |p ZDB-23-DEI |q ZDB-23-DEI24 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/document/isbn/9783111339207/html |l DE-863 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/document/isbn/9783111339207/html |l DE-862 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-91 |p ZDB-23-DEI |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-706 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111339207 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-OTHR_katkey | 7043512 |
---|---|
DE-BY-TUM_katkey | 2803201 |
_version_ | 1831256098215034881 |
adam_text | |
any_adam_object | |
author | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel |
author_GND | (DE-588)114116733 |
author_facet | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel |
author_role | aut aut aut |
author_sort | Beyerer, Jürgen 1961- |
author_variant | j b jb r h rh d s ds |
building | Verbundindex |
bvnumber | BV049653266 |
classification_rvk | ST 330 ZN 6050 |
classification_tum | TEC 000 DAT 000 |
collection | ZDB-23-DGG ZDB-23-DEI ZDB-23-OTI |
ctrlnum | (ZDB-23-DGG)9783111339207 (OCoLC)1430766777 (DE-599)BVBBV049653266 |
discipline | Technik Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1515/9783111339207 |
edition | 2nd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049653266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241211</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240417s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111339207</subfield><subfield code="c">PDF</subfield><subfield code="9">978-3-11-133920-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111339412</subfield><subfield code="c">ePub</subfield><subfield code="9">978-3-11-133941-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783111339207</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783111339207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1430766777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049653266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beyerer, Jürgen</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114116733</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition</subfield><subfield code="b">introduction, features, classifiers and principles</subfield><subfield code="c">Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter Oldenbourg</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXV, 327 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features: their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors' point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automation</subfield><subfield code="0">(DE-588)4003957-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagmanns, Raphael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadler, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-133919-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-OTI</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034996669</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-23-OTI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">ZDB-23-DEI24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/document/isbn/9783111339207/html</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/document/isbn/9783111339207/html</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111339207</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049653266 |
illustrated | Not Illustrated |
indexdate | 2025-02-18T21:09:29Z |
institution | BVB |
isbn | 9783111339207 9783111339412 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034996669 |
oclc_num | 1430766777 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-M347 DE-11 DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-M347 DE-11 DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
physical | 1 Online-Ressource (XXV, 327 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DEI ZDB-23-OTI ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DEI ZDB-23-DEI24 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DEI TUM_Paketkauf_2024 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter Oldenbourg |
record_format | marc |
series2 | De Gruyter Textbook |
spellingShingle | Beyerer, Jürgen 1961- Hagmanns, Raphael Stadler, Daniel Pattern recognition introduction, features, classifiers and principles Merkmalsextraktion (DE-588)4314440-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Data Mining (DE-588)4428654-5 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Automation (DE-588)4003957-2 gnd |
subject_GND | (DE-588)4314440-8 (DE-588)4033447-8 (DE-588)4428654-5 (DE-588)4120957-6 (DE-588)4040936-3 (DE-588)4193754-5 (DE-588)4003957-2 |
title | Pattern recognition introduction, features, classifiers and principles |
title_auth | Pattern recognition introduction, features, classifiers and principles |
title_exact_search | Pattern recognition introduction, features, classifiers and principles |
title_full | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_fullStr | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_full_unstemmed | Pattern recognition introduction, features, classifiers and principles Jürgen Beyerer, Raphael Hagmanns, Daniel Stadler |
title_short | Pattern recognition |
title_sort | pattern recognition introduction features classifiers and principles |
title_sub | introduction, features, classifiers and principles |
topic | Merkmalsextraktion (DE-588)4314440-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Data Mining (DE-588)4428654-5 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Mustererkennung (DE-588)4040936-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Automation (DE-588)4003957-2 gnd |
topic_facet | Merkmalsextraktion Künstliche Intelligenz Data Mining Automatische Klassifikation Mustererkennung Maschinelles Lernen Automation |
url | https://doi.org/10.1515/9783111339207 |
work_keys_str_mv | AT beyererjurgen patternrecognitionintroductionfeaturesclassifiersandprinciples AT hagmannsraphael patternrecognitionintroductionfeaturesclassifiersandprinciples AT stadlerdaniel patternrecognitionintroductionfeaturesclassifiersandprinciples |