Designing deep learning systems: a guide for software engineers
Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learnin...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Weitere beteiligte Personen: | , , |
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Shelter Island
Manning
[2023]
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034973062&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Zusammenfassung: | Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It s full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You ll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system s platform differs from other distributed systems. By mastering the core ideas in this book, you ll be able to support deep learning systems in a way that s fast, repeatable, and reliable |
Umfang: | xx, 337 Seiten Illustrationen, Diagramme |
ISBN: | 9781633439863 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049629199 | ||
003 | DE-604 | ||
005 | 20240513 | ||
007 | t| | ||
008 | 240327s2023 xx a||| |||| 00||| eng d | ||
020 | |a 9781633439863 |9 978-1-63343-986-3 | ||
035 | |a (OCoLC)1437841246 | ||
035 | |a (DE-599)KXP1852844388 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
082 | 0 | |a a006.31 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Wang, Chi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Designing deep learning systems |b a guide for software engineers |c Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong |
264 | 1 | |a Shelter Island |b Manning |c [2023] | |
300 | |a xx, 337 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It s full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You ll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system s platform differs from other distributed systems. By mastering the core ideas in this book, you ll be able to support deep learning systems in a way that s fast, repeatable, and reliable | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Software Engineering |0 (DE-588)4116521-4 |2 gnd |9 rswk-swf |
653 | 0 | |a COM060180 | |
653 | 0 | |a Maschinelles Lernen | |
653 | 0 | |a Software Engineering | |
653 | 0 | |a Web services | |
653 | 0 | |a Webservices | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Software Engineering |0 (DE-588)4116521-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Szeto, Donald |e Verfasser |4 aut | |
700 | 1 | |a Xue, Yan |4 ctb | |
700 | 1 | |a Savarese, Silvio |0 (DE-588)1135198101 |4 ctb | |
700 | 1 | |a Xiong, Caiming |4 ctb | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034973062&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034973062 |
Datensatz im Suchindex
_version_ | 1818991876844290048 |
---|---|
any_adam_object | 1 |
author | Wang, Chi Szeto, Donald |
author2 | Xue, Yan Savarese, Silvio Xiong, Caiming |
author2_role | ctb ctb ctb |
author2_variant | y x yx s s ss c x cx |
author_GND | (DE-588)1135198101 |
author_facet | Wang, Chi Szeto, Donald Xue, Yan Savarese, Silvio Xiong, Caiming |
author_role | aut aut |
author_sort | Wang, Chi |
author_variant | c w cw d s ds |
building | Verbundindex |
bvnumber | BV049629199 |
classification_rvk | ST 301 |
ctrlnum | (OCoLC)1437841246 (DE-599)KXP1852844388 |
dewey-raw | a006.31 |
dewey-search | a006.31 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03343nam a2200469 c 4500</leader><controlfield tag="001">BV049629199</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240513 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240327s2023 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781633439863</subfield><subfield code="9">978-1-63343-986-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437841246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1852844388</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">a006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Chi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Designing deep learning systems</subfield><subfield code="b">a guide for software engineers</subfield><subfield code="c">Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island</subfield><subfield code="b">Manning</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 337 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It s full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You ll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system s platform differs from other distributed systems. By mastering the core ideas in this book, you ll be able to support deep learning systems in a way that s fast, repeatable, and reliable</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COM060180</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Software Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Web services</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Webservices</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szeto, Donald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Yan</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savarese, Silvio</subfield><subfield code="0">(DE-588)1135198101</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Caiming</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034973062&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034973062</subfield></datafield></record></collection> |
id | DE-604.BV049629199 |
illustrated | Illustrated |
indexdate | 2024-12-20T20:17:14Z |
institution | BVB |
isbn | 9781633439863 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034973062 |
oclc_num | 1437841246 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xx, 337 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Manning |
record_format | marc |
spelling | Wang, Chi Verfasser aut Designing deep learning systems a guide for software engineers Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong Shelter Island Manning [2023] xx, 337 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It s full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You ll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system s platform differs from other distributed systems. By mastering the core ideas in this book, you ll be able to support deep learning systems in a way that s fast, repeatable, and reliable Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Software Engineering (DE-588)4116521-4 gnd rswk-swf COM060180 Maschinelles Lernen Software Engineering Web services Webservices Maschinelles Lernen (DE-588)4193754-5 s Software Engineering (DE-588)4116521-4 s DE-604 Szeto, Donald Verfasser aut Xue, Yan ctb Savarese, Silvio (DE-588)1135198101 ctb Xiong, Caiming ctb Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034973062&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wang, Chi Szeto, Donald Designing deep learning systems a guide for software engineers Maschinelles Lernen (DE-588)4193754-5 gnd Software Engineering (DE-588)4116521-4 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4116521-4 |
title | Designing deep learning systems a guide for software engineers |
title_auth | Designing deep learning systems a guide for software engineers |
title_exact_search | Designing deep learning systems a guide for software engineers |
title_full | Designing deep learning systems a guide for software engineers Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong |
title_fullStr | Designing deep learning systems a guide for software engineers Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong |
title_full_unstemmed | Designing deep learning systems a guide for software engineers Chi Wang and Donald Szeto ; code lab by Yan Xue ; foreword by Silvio Savarese and Caiming Xiong |
title_short | Designing deep learning systems |
title_sort | designing deep learning systems a guide for software engineers |
title_sub | a guide for software engineers |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Software Engineering (DE-588)4116521-4 gnd |
topic_facet | Maschinelles Lernen Software Engineering |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034973062&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wangchi designingdeeplearningsystemsaguideforsoftwareengineers AT szetodonald designingdeeplearningsystemsaguideforsoftwareengineers AT xueyan designingdeeplearningsystemsaguideforsoftwareengineers AT savaresesilvio designingdeeplearningsystemsaguideforsoftwareengineers AT xiongcaiming designingdeeplearningsystemsaguideforsoftwareengineers |