Python 3 and feature engineering:
This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Dulles, VA
Mercury Learning and Information
[2023]
|
Subjects: | |
Links: | https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 https://doi.org/10.1515/9781683929482 |
Summary: | This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you'll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you'll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework |
Physical Description: | 1 Online-Ressource (216 Seiten) |
ISBN: | 9781683929482 |
DOI: | 10.1515/9781683929482 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049627971 | ||
003 | DE-604 | ||
005 | 20250324 | ||
007 | cr|uuu---uuuuu | ||
008 | 240326s2023 xx o|||| 00||| eng d | ||
020 | |a 9781683929482 |9 978-1-68392-948-2 | ||
024 | 7 | |a 10.1515/9781683929482 |2 doi | |
035 | |a (ZDB-23-DGG)9781683929482 | ||
035 | |a (OCoLC)1429561010 | ||
035 | |a (DE-599)BVBBV049627971 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-11 |a DE-706 |a DE-863 |a DE-862 | ||
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Campesato, Oswald |e Verfasser |0 (DE-588)1045391425 |4 aut | |
245 | 1 | 0 | |a Python 3 and feature engineering |c Oswald Campesato |
264 | 1 | |a Dulles, VA |b Mercury Learning and Information |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (216 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you'll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you'll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework | ||
650 | 7 | |a COMPUTERS / Desktop Applications / Spreadsheets |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683929499 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683929482 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DEI | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034971856 | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-863 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-862 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-91 |p ZDB-23-DEI |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-706 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683929482 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2797231 |
---|---|
_version_ | 1827522160491495424 |
adam_text | |
any_adam_object | |
author | Campesato, Oswald |
author_GND | (DE-588)1045391425 |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049627971 |
classification_tum | TEC 000 DAT 000 |
collection | ZDB-23-DGG ZDB-23-DEI |
ctrlnum | (ZDB-23-DGG)9781683929482 (OCoLC)1429561010 (DE-599)BVBBV049627971 |
discipline | Technik Informatik |
doi_str_mv | 10.1515/9781683929482 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049627971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250324</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240326s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683929482</subfield><subfield code="9">978-1-68392-948-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683929482</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683929482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1429561010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049627971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1045391425</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python 3 and feature engineering</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dulles, VA</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (216 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you'll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you'll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Desktop Applications / Spreadsheets</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683929499</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034971856</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683929482</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049627971 |
illustrated | Not Illustrated |
indexdate | 2025-03-24T13:02:42Z |
institution | BVB |
isbn | 9781683929482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034971856 |
oclc_num | 1429561010 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-11 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-11 DE-706 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (216 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DEI ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DEI TUM_Paketkauf_2023 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Mercury Learning and Information |
record_format | marc |
spellingShingle | Campesato, Oswald Python 3 and feature engineering COMPUTERS / Desktop Applications / Spreadsheets bisacsh |
title | Python 3 and feature engineering |
title_auth | Python 3 and feature engineering |
title_exact_search | Python 3 and feature engineering |
title_full | Python 3 and feature engineering Oswald Campesato |
title_fullStr | Python 3 and feature engineering Oswald Campesato |
title_full_unstemmed | Python 3 and feature engineering Oswald Campesato |
title_short | Python 3 and feature engineering |
title_sort | python 3 and feature engineering |
topic | COMPUTERS / Desktop Applications / Spreadsheets bisacsh |
topic_facet | COMPUTERS / Desktop Applications / Spreadsheets |
url | https://doi.org/10.1515/9781683929482 |
work_keys_str_mv | AT campesatooswald python3andfeatureengineering |