Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Stevenage
The Institution of Engineering and Technology
2023
|
Schriftenreihe: | IET materials, circuits and devices series
80 |
Links: | https://doi.org/10.1049/PBCS080E https://doi.org/10.1049/PBCS080E https://doi.org/10.1049/PBCS080E |
Zusammenfassung: | "Physical Biometrics for Hardware Security of DSP and Machine Learning Coprocessors" presents state-of-the art explanations for detective control-based security and protection of digital signal processing (DSP) and machine learning coprocessors against hardware threats. Such threats include intellectual property (IP) abuse and misuse, for example, fraudulent claims of IP ownership and IP piracy. DSP coprocessors such as finite impulse response filters, image processing filters, discrete Fourier transform, and JPEG compression hardware are extensively utilized in several real-life applications. Further, machine learning coprocessors such as convolutional neural network (CNN) hardware IP cores play a vital role in several applications such as face recognition, medical imaging, autonomous driving, and biometric authentication, amongst others. Written by an expert in the field, this book reviews recent advances in hardware security and IP protection of digital signal processing (DSP) and machine learning coprocessors using physical biometrics and DNA. It presents solutions for secured coprocessors for DSP, image processing applications and CNN, and where relevant chapters explores the advantages, disadvantages and security-cost trade-offs between different approaches and techniques to assist in the practical application of these methods. The interdisciplinary themes and topics covered are expected to be of interest to researchers in several areas of specialisation, encompassing the overlapping fields of hardware design security, VLSI design (high level synthesis, register transfer level, gate level synthesis), IP core, optimization using evolutionary computing, system-on-chip design, and biometrics. CAD/design engineers, system architects and students will also find this book to be a useful resource. |
Umfang: | 1 Online-Ressource (xvii, 332 Seiten) Illustrationen, Diagramme |
ISBN: | 9781839538223 |
DOI: | 10.1049/PBCS080E |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048996258 | ||
003 | DE-604 | ||
005 | 20240207 | ||
007 | cr|uuu---uuuuu | ||
008 | 230612s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781839538223 |9 978-1-83953-822-3 | ||
024 | 7 | |a 10.1049/PBCS080E |2 doi | |
024 | 7 | |a 10.1049/PBCS080E |2 doi | |
035 | |a (ZDB-100-IET)PBCS080E | ||
035 | |a (OCoLC)1385287409 | ||
035 | |a (DE-599)BVBBV048996258 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-706 | ||
100 | 1 | |a Sengupta, Anirban |d ca. 20./21. Jahrhundert |e Verfasser |0 (DE-588)120088549X |4 aut | |
245 | 1 | 0 | |a Physical biometrics for hardware security of DSP and Machine Learning coprocessors |c Anirban Sengupta |
264 | 1 | |a Stevenage |b The Institution of Engineering and Technology |c 2023 | |
300 | |a 1 Online-Ressource (xvii, 332 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IET materials, circuits and devices series |v 80 | |
520 | |a "Physical Biometrics for Hardware Security of DSP and Machine Learning Coprocessors" presents state-of-the art explanations for detective control-based security and protection of digital signal processing (DSP) and machine learning coprocessors against hardware threats. Such threats include intellectual property (IP) abuse and misuse, for example, fraudulent claims of IP ownership and IP piracy. DSP coprocessors such as finite impulse response filters, image processing filters, discrete Fourier transform, and JPEG compression hardware are extensively utilized in several real-life applications. Further, machine learning coprocessors such as convolutional neural network (CNN) hardware IP cores play a vital role in several applications such as face recognition, medical imaging, autonomous driving, and biometric authentication, amongst others. Written by an expert in the field, this book reviews recent advances in hardware security and IP protection of digital signal processing (DSP) and machine learning coprocessors using physical biometrics and DNA. It presents solutions for secured coprocessors for DSP, image processing applications and CNN, and where relevant chapters explores the advantages, disadvantages and security-cost trade-offs between different approaches and techniques to assist in the practical application of these methods. The interdisciplinary themes and topics covered are expected to be of interest to researchers in several areas of specialisation, encompassing the overlapping fields of hardware design security, VLSI design (high level synthesis, register transfer level, gate level synthesis), IP core, optimization using evolutionary computing, system-on-chip design, and biometrics. CAD/design engineers, system architects and students will also find this book to be a useful resource. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83953-821-6 |
856 | 4 | 0 | |u https://doi.org/10.1049/PBCS080E |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-100-IET | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034259503 | |
966 | e | |u https://doi.org/10.1049/PBCS080E |l DE-91 |p ZDB-100-IET |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1049/PBCS080E |l DE-706 |p ZDB-100-IET |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2746537 |
---|---|
_version_ | 1821936647600603137 |
any_adam_object | |
author | Sengupta, Anirban ca. 20./21. Jahrhundert |
author_GND | (DE-588)120088549X |
author_facet | Sengupta, Anirban ca. 20./21. Jahrhundert |
author_role | aut |
author_sort | Sengupta, Anirban ca. 20./21. Jahrhundert |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV048996258 |
collection | ZDB-100-IET |
ctrlnum | (ZDB-100-IET)PBCS080E (OCoLC)1385287409 (DE-599)BVBBV048996258 |
doi_str_mv | 10.1049/PBCS080E |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nam a2200373zcb4500</leader><controlfield tag="001">BV048996258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230612s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839538223</subfield><subfield code="9">978-1-83953-822-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/PBCS080E</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/PBCS080E</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-100-IET)PBCS080E</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1385287409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048996258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sengupta, Anirban</subfield><subfield code="d">ca. 20./21. Jahrhundert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120088549X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical biometrics for hardware security of DSP and Machine Learning coprocessors</subfield><subfield code="c">Anirban Sengupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stevenage</subfield><subfield code="b">The Institution of Engineering and Technology</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 332 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IET materials, circuits and devices series</subfield><subfield code="v">80</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Physical Biometrics for Hardware Security of DSP and Machine Learning Coprocessors" presents state-of-the art explanations for detective control-based security and protection of digital signal processing (DSP) and machine learning coprocessors against hardware threats. Such threats include intellectual property (IP) abuse and misuse, for example, fraudulent claims of IP ownership and IP piracy. DSP coprocessors such as finite impulse response filters, image processing filters, discrete Fourier transform, and JPEG compression hardware are extensively utilized in several real-life applications. Further, machine learning coprocessors such as convolutional neural network (CNN) hardware IP cores play a vital role in several applications such as face recognition, medical imaging, autonomous driving, and biometric authentication, amongst others. Written by an expert in the field, this book reviews recent advances in hardware security and IP protection of digital signal processing (DSP) and machine learning coprocessors using physical biometrics and DNA. It presents solutions for secured coprocessors for DSP, image processing applications and CNN, and where relevant chapters explores the advantages, disadvantages and security-cost trade-offs between different approaches and techniques to assist in the practical application of these methods. The interdisciplinary themes and topics covered are expected to be of interest to researchers in several areas of specialisation, encompassing the overlapping fields of hardware design security, VLSI design (high level synthesis, register transfer level, gate level synthesis), IP core, optimization using evolutionary computing, system-on-chip design, and biometrics. CAD/design engineers, system architects and students will also find this book to be a useful resource.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83953-821-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/PBCS080E</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-100-IET</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034259503</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBCS080E</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBCS080E</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048996258 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:57:59Z |
institution | BVB |
isbn | 9781839538223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034259503 |
oclc_num | 1385287409 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-706 |
physical | 1 Online-Ressource (xvii, 332 Seiten) Illustrationen, Diagramme |
psigel | ZDB-100-IET ZDB-100-IET TUM_Paketkauf_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | The Institution of Engineering and Technology |
record_format | marc |
series2 | IET materials, circuits and devices series |
spellingShingle | Sengupta, Anirban ca. 20./21. Jahrhundert Physical biometrics for hardware security of DSP and Machine Learning coprocessors |
title | Physical biometrics for hardware security of DSP and Machine Learning coprocessors |
title_auth | Physical biometrics for hardware security of DSP and Machine Learning coprocessors |
title_exact_search | Physical biometrics for hardware security of DSP and Machine Learning coprocessors |
title_full | Physical biometrics for hardware security of DSP and Machine Learning coprocessors Anirban Sengupta |
title_fullStr | Physical biometrics for hardware security of DSP and Machine Learning coprocessors Anirban Sengupta |
title_full_unstemmed | Physical biometrics for hardware security of DSP and Machine Learning coprocessors Anirban Sengupta |
title_short | Physical biometrics for hardware security of DSP and Machine Learning coprocessors |
title_sort | physical biometrics for hardware security of dsp and machine learning coprocessors |
url | https://doi.org/10.1049/PBCS080E |
work_keys_str_mv | AT senguptaanirban physicalbiometricsforhardwaresecurityofdspandmachinelearningcoprocessors |