Fundamentals of deep learning: designing next-generation machine intelligence algorithms
We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But decipher...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Beijing
O'Reilly
May 2022
|
Ausgabe: | Second edition |
Schlagwörter: | |
Links: | https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6987697 https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6987697 |
Zusammenfassung: | We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning |
Beschreibung: | First edition: 2017 |
Umfang: | 1 Online-Ressource (xiii, 372 Seiten) |
ISBN: | 9781492082156 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048418038 | ||
003 | DE-604 | ||
005 | 20230224 | ||
007 | cr|uuu---uuuuu | ||
008 | 220823s2022 xx o|||| 00||| eng d | ||
020 | |a 9781492082156 |c OnlineAusgabe |9 978-1-492-08215-6 | ||
035 | |a (OCoLC)1344244406 | ||
035 | |a (DE-599)BVBBV048418038 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-355 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Buduma, Nithin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of deep learning |b designing next-generation machine intelligence algorithms |c Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio |
250 | |a Second edition | ||
264 | 1 | |a Beijing |b O'Reilly |c May 2022 | |
300 | |a 1 Online-Ressource (xiii, 372 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a First edition: 2017 | ||
520 | |a We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning | ||
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 7 | |a Artificial intelligence |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Buduma, Nikhil |d 1994- |e Verfasser |0 (DE-588)1136495533 |4 aut | |
700 | 1 | |a Papa, Joe |e Verfasser |0 (DE-588)1250286557 |4 aut | |
700 | 1 | |a Locascio, Nicholas |0 (DE-588)1138387258 |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4920-8218-7 |w (DE-604)BV047583125 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033796383 | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6987697 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6987697 |l DE-355 |p ZDB-30-PQE |q UBR Sammelbestellung 2022 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1823932150369484800 |
---|---|
adam_text | |
any_adam_object | |
author | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe |
author2 | Locascio, Nicholas |
author2_role | ctb |
author2_variant | n l nl |
author_GND | (DE-588)1136495533 (DE-588)1250286557 (DE-588)1138387258 |
author_facet | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe Locascio, Nicholas |
author_role | aut aut aut |
author_sort | Buduma, Nithin |
author_variant | n b nb n b nb j p jp |
building | Verbundindex |
bvnumber | BV048418038 |
classification_rvk | ST 302 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1344244406 (DE-599)BVBBV048418038 |
discipline | Informatik |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048418038</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230224</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220823s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082156</subfield><subfield code="c">OnlineAusgabe</subfield><subfield code="9">978-1-492-08215-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344244406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048418038</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buduma, Nithin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of deep learning</subfield><subfield code="b">designing next-generation machine intelligence algorithms</subfield><subfield code="c">Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">May 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 372 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">First edition: 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buduma, Nikhil</subfield><subfield code="d">1994-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136495533</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papa, Joe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1250286557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Locascio, Nicholas</subfield><subfield code="0">(DE-588)1138387258</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4920-8218-7</subfield><subfield code="w">(DE-604)BV047583125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033796383</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6987697</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6987697</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2022</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048418038 |
illustrated | Not Illustrated |
indexdate | 2025-02-13T09:00:46Z |
institution | BVB |
isbn | 9781492082156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033796383 |
oclc_num | 1344244406 |
open_access_boolean | |
owner | DE-1050 DE-355 DE-BY-UBR |
owner_facet | DE-1050 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 372 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf ZDB-30-PQE UBR Sammelbestellung 2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly |
record_format | marc |
spelling | Buduma, Nithin Verfasser aut Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio Second edition Beijing O'Reilly May 2022 1 Online-Ressource (xiii, 372 Seiten) txt rdacontent c rdamedia cr rdacarrier First edition: 2017 We're in the midst of an AI research explosion. Deep learning has unlocked superhuman perception to power our push toward creating self-driving vehicles, defeating human experts at a variety of difficult games including Go, and even generating essays with shockingly coherent prose. But deciphering these breakthroughs often takes a PhD in machine learning and mathematics. The updated second edition of this book describes the intuition behind these innovations without jargon or complexity. Python-proficient programmers, software engineering professionals, and computer science majors will be able to reimplement these breakthroughs on their own and reason about them with a level of sophistication that rivals some of the best developers in the field. Learn the mathematics behind machine learning jargon Examine the foundations of machine learning and neural networks Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Explore methods in interpreting complex machine learning models Gain theoretical and practical knowledge on generative modeling Understand the fundamentals of reinforcement learning Artificial intelligence Machine learning Neural networks (Computer science) Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast Deep Learning (DE-588)1135597375 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Deep Learning (DE-588)1135597375 s DE-604 Buduma, Nikhil 1994- Verfasser (DE-588)1136495533 aut Papa, Joe Verfasser (DE-588)1250286557 aut Locascio, Nicholas (DE-588)1138387258 ctb Erscheint auch als Druck-Ausgabe 978-1-4920-8218-7 (DE-604)BV047583125 |
spellingShingle | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe Fundamentals of deep learning designing next-generation machine intelligence algorithms Artificial intelligence Machine learning Neural networks (Computer science) Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast Deep Learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4193754-5 |
title | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_auth | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_exact_search | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_full | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio |
title_fullStr | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio |
title_full_unstemmed | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa; with contributions by Nicholas Locascio |
title_short | Fundamentals of deep learning |
title_sort | fundamentals of deep learning designing next generation machine intelligence algorithms |
title_sub | designing next-generation machine intelligence algorithms |
topic | Artificial intelligence Machine learning Neural networks (Computer science) Artificial intelligence fast Machine learning fast Neural networks (Computer science) fast Deep Learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Artificial intelligence Machine learning Neural networks (Computer science) Deep Learning Maschinelles Lernen |
work_keys_str_mv | AT budumanithin fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT budumanikhil fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT papajoe fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT locascionicholas fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms |