Modeling and Predicting the Spread of Covid-19: Comparative Results for the United States, the Philippines, and South Africa
A model of Covid-19 transmission among locations within a country has been developed that is (1) implementable anywhere spatially-disaggregated Covid-19 infection data are available; (2) scalable for locations of different sizes, from individual regions to countries of continental scale; (3) reliant...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Washington, D.C
The World Bank
2020
|
Schriftenreihe: | World Bank E-Library Archive
|
Links: | https://doi.org/10.1596/1813-9450-9419 |
Zusammenfassung: | A model of Covid-19 transmission among locations within a country has been developed that is (1) implementable anywhere spatially-disaggregated Covid-19 infection data are available; (2) scalable for locations of different sizes, from individual regions to countries of continental scale; (3) reliant solely on data that are free and open to public access; (4) grounded in a rigorous, proven methodology; and (5) capable of forecasting future hotspots with enough accuracy to provide useful alerts. Applications to the United States, the Philippines, and South Africa's Western Cape province demonstrate the model's usefulness. The model variables include indicators of interactions among infected residents, locally and at a greater distance, with infection dynamics captured by a Gompertz growth model. The model results for all three countries suggest that local infection growth is affected by the scale of infections in relatively distant places. Forecasts of hotspots 14 and 28 days in advance, using only information available on the first day of the forecast, indicate an imperfect but nonetheless informative identification of actual hotspots |
Umfang: | 1 Online-Ressource (24 Seiten) |
DOI: | 10.1596/1813-9450-9419 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274858 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2020 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1596/1813-9450-9419 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011157798 | ||
035 | |a (OCoLC)1334029722 | ||
035 | |a (DE-599)GBVNLM011157798 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Dasgupta, Susmita |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modeling and Predicting the Spread of Covid-19 |b Comparative Results for the United States, the Philippines, and South Africa |c Susmita Dasgupta |
264 | 1 | |a Washington, D.C |b The World Bank |c 2020 | |
300 | |a 1 Online-Ressource (24 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a A model of Covid-19 transmission among locations within a country has been developed that is (1) implementable anywhere spatially-disaggregated Covid-19 infection data are available; (2) scalable for locations of different sizes, from individual regions to countries of continental scale; (3) reliant solely on data that are free and open to public access; (4) grounded in a rigorous, proven methodology; and (5) capable of forecasting future hotspots with enough accuracy to provide useful alerts. Applications to the United States, the Philippines, and South Africa's Western Cape province demonstrate the model's usefulness. The model variables include indicators of interactions among infected residents, locally and at a greater distance, with infection dynamics captured by a Gompertz growth model. The model results for all three countries suggest that local infection growth is affected by the scale of infections in relatively distant places. Forecasts of hotspots 14 and 28 days in advance, using only information available on the first day of the forecast, indicate an imperfect but nonetheless informative identification of actual hotspots | ||
700 | 1 | |a Dasgupta, Susmita |4 oth | |
700 | 1 | |a Wheeler, David |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Dasgupta, Susmita |t Modeling and Predicting the Spread of Covid-19: Comparative Results for the United States, the Philippines, and South Africa |d Washington, D.C : The World Bank, 2020 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9419 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033655053 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2826021 |
---|---|
_version_ | 1821937213129097218 |
any_adam_object | |
author | Dasgupta, Susmita |
author_facet | Dasgupta, Susmita |
author_role | aut |
author_sort | Dasgupta, Susmita |
author_variant | s d sd |
building | Verbundindex |
bvnumber | BV048274858 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011157798 (OCoLC)1334029722 (DE-599)GBVNLM011157798 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9419 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02642nam a2200349zc 4500</leader><controlfield tag="001">BV048274858</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2020 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9419</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011157798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334029722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011157798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dasgupta, Susmita</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Predicting the Spread of Covid-19</subfield><subfield code="b">Comparative Results for the United States, the Philippines, and South Africa</subfield><subfield code="c">Susmita Dasgupta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (24 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A model of Covid-19 transmission among locations within a country has been developed that is (1) implementable anywhere spatially-disaggregated Covid-19 infection data are available; (2) scalable for locations of different sizes, from individual regions to countries of continental scale; (3) reliant solely on data that are free and open to public access; (4) grounded in a rigorous, proven methodology; and (5) capable of forecasting future hotspots with enough accuracy to provide useful alerts. Applications to the United States, the Philippines, and South Africa's Western Cape province demonstrate the model's usefulness. The model variables include indicators of interactions among infected residents, locally and at a greater distance, with infection dynamics captured by a Gompertz growth model. The model results for all three countries suggest that local infection growth is affected by the scale of infections in relatively distant places. Forecasts of hotspots 14 and 28 days in advance, using only information available on the first day of the forecast, indicate an imperfect but nonetheless informative identification of actual hotspots</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dasgupta, Susmita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wheeler, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Dasgupta, Susmita</subfield><subfield code="t">Modeling and Predicting the Spread of Covid-19: Comparative Results for the United States, the Philippines, and South Africa</subfield><subfield code="d">Washington, D.C : The World Bank, 2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9419</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033655053</subfield></datafield></record></collection> |
id | DE-604.BV048274858 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:40:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033655053 |
oclc_num | 1334029722 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (24 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Dasgupta, Susmita Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa |
title | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa |
title_auth | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa |
title_exact_search | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa |
title_full | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa Susmita Dasgupta |
title_fullStr | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa Susmita Dasgupta |
title_full_unstemmed | Modeling and Predicting the Spread of Covid-19 Comparative Results for the United States, the Philippines, and South Africa Susmita Dasgupta |
title_short | Modeling and Predicting the Spread of Covid-19 |
title_sort | modeling and predicting the spread of covid 19 comparative results for the united states the philippines and south africa |
title_sub | Comparative Results for the United States, the Philippines, and South Africa |
url | https://doi.org/10.1596/1813-9450-9419 |
work_keys_str_mv | AT dasguptasusmita modelingandpredictingthespreadofcovid19comparativeresultsfortheunitedstatesthephilippinesandsouthafrica AT wheelerdavid modelingandpredictingthespreadofcovid19comparativeresultsfortheunitedstatesthephilippinesandsouthafrica |