Generating Gridded Agricultural Gross Domestic Product for Brazil: A Comparison of Methodologies
This paper examines two new methods to generate gridded agricultural Gross Domestic Product (GDP) and compares the results with a traditional method. In the case of Brazil, these two new methods of spatial disaggregation and cross-entropy outperform the prediction of agricultural GDP from the tradit...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Washington, D.C
The World Bank
2019
|
Schriftenreihe: | World Bank E-Library Archive
|
Links: | https://doi.org/10.1596/1813-9450-8985 |
Zusammenfassung: | This paper examines two new methods to generate gridded agricultural Gross Domestic Product (GDP) and compares the results with a traditional method. In the case of Brazil, these two new methods of spatial disaggregation and cross-entropy outperform the prediction of agricultural GDP from the traditional method that distributes agricultural GDP using rural population. The paper finds that the best prediction method is spatial disaggregation using a regression approach for all the key crops and contributors to agricultural GDP. However, the issue of degrees of freedom is an important limiting factor, as the approach requires sufficient subnational data. The cross-entropy method with readily available spatially distributed crop, livestock, forest, and fish allocation far outperforms the traditional method, at least in the case of Brazil, and can operate with national- and/or subnational-level data |
Umfang: | 1 Online-Ressource (20 Seiten) |
DOI: | 10.1596/1813-9450-8985 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274455 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2019 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1596/1813-9450-8985 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011153776 | ||
035 | |a (OCoLC)1334044979 | ||
035 | |a (DE-599)GBVNLM011153776 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Thomas, Timothy S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Generating Gridded Agricultural Gross Domestic Product for Brazil |b A Comparison of Methodologies |c Timothy S. Thomas |
264 | 1 | |a Washington, D.C |b The World Bank |c 2019 | |
300 | |a 1 Online-Ressource (20 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a This paper examines two new methods to generate gridded agricultural Gross Domestic Product (GDP) and compares the results with a traditional method. In the case of Brazil, these two new methods of spatial disaggregation and cross-entropy outperform the prediction of agricultural GDP from the traditional method that distributes agricultural GDP using rural population. The paper finds that the best prediction method is spatial disaggregation using a regression approach for all the key crops and contributors to agricultural GDP. However, the issue of degrees of freedom is an important limiting factor, as the approach requires sufficient subnational data. The cross-entropy method with readily available spatially distributed crop, livestock, forest, and fish allocation far outperforms the traditional method, at least in the case of Brazil, and can operate with national- and/or subnational-level data | ||
700 | 1 | |a Blankespoor, Brian |4 oth | |
700 | 1 | |a Kalvelagen, Erwin |4 oth | |
700 | 1 | |a Ru, Yating |4 oth | |
700 | 1 | |a Thomas, Timothy S. |4 oth | |
700 | 1 | |a Wood-Sichra, Ulrike |4 oth | |
700 | 1 | |a You, Liangzhi |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Thomas, Timothy S |t Generating Gridded Agricultural Gross Domestic Product for Brazil: A Comparison of Methodologies |d Washington, D.C : The World Bank, 2019 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8985 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033654650 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2825619 |
---|---|
_version_ | 1821937211368538112 |
any_adam_object | |
author | Thomas, Timothy S. |
author_facet | Thomas, Timothy S. |
author_role | aut |
author_sort | Thomas, Timothy S. |
author_variant | t s t ts tst |
building | Verbundindex |
bvnumber | BV048274455 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011153776 (OCoLC)1334044979 (DE-599)GBVNLM011153776 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8985 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02497nam a2200397zc 4500</leader><controlfield tag="001">BV048274455</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2019 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8985</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011153776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334044979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011153776</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, Timothy S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generating Gridded Agricultural Gross Domestic Product for Brazil</subfield><subfield code="b">A Comparison of Methodologies</subfield><subfield code="c">Timothy S. Thomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (20 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper examines two new methods to generate gridded agricultural Gross Domestic Product (GDP) and compares the results with a traditional method. In the case of Brazil, these two new methods of spatial disaggregation and cross-entropy outperform the prediction of agricultural GDP from the traditional method that distributes agricultural GDP using rural population. The paper finds that the best prediction method is spatial disaggregation using a regression approach for all the key crops and contributors to agricultural GDP. However, the issue of degrees of freedom is an important limiting factor, as the approach requires sufficient subnational data. The cross-entropy method with readily available spatially distributed crop, livestock, forest, and fish allocation far outperforms the traditional method, at least in the case of Brazil, and can operate with national- and/or subnational-level data</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blankespoor, Brian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalvelagen, Erwin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ru, Yating</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Timothy S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood-Sichra, Ulrike</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Liangzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Thomas, Timothy S</subfield><subfield code="t">Generating Gridded Agricultural Gross Domestic Product for Brazil: A Comparison of Methodologies</subfield><subfield code="d">Washington, D.C : The World Bank, 2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8985</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033654650</subfield></datafield></record></collection> |
id | DE-604.BV048274455 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:40:28Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033654650 |
oclc_num | 1334044979 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (20 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Thomas, Timothy S. Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies |
title | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies |
title_auth | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies |
title_exact_search | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies |
title_full | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies Timothy S. Thomas |
title_fullStr | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies Timothy S. Thomas |
title_full_unstemmed | Generating Gridded Agricultural Gross Domestic Product for Brazil A Comparison of Methodologies Timothy S. Thomas |
title_short | Generating Gridded Agricultural Gross Domestic Product for Brazil |
title_sort | generating gridded agricultural gross domestic product for brazil a comparison of methodologies |
title_sub | A Comparison of Methodologies |
url | https://doi.org/10.1596/1813-9450-8985 |
work_keys_str_mv | AT thomastimothys generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies AT blankespoorbrian generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies AT kalvelagenerwin generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies AT ruyating generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies AT woodsichraulrike generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies AT youliangzhi generatinggriddedagriculturalgrossdomesticproductforbrazilacomparisonofmethodologies |