Delay-Doppler communications: principles and applications
Saved in:
Main Authors: | , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom
Academic Press, an imprint of Elsevier
[2022]
|
Links: | https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6887217 |
Item Description: | Description based on publisher supplied metadata and other sources |
Physical Description: | 1 Online-Ressource (xx, 240 Seiten) Illustrationen, Diagramme |
ISBN: | 9780323859660 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221853 | ||
003 | DE-604 | ||
005 | 20240216 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9780323859660 |9 978-0-323-85966-0 | ||
035 | |a (ZDB-30-PQE)EBC6887217 | ||
035 | |a (ZDB-30-PAD)EBC6887217 | ||
035 | |a (ZDB-89-EBL)EBL6887217 | ||
035 | |a (OCoLC)1299382780 | ||
035 | |a (DE-599)BVBBV048221853 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 621.38456 | |
084 | |a ZN 6560 |0 (DE-625)157572: |2 rvk | ||
084 | |a ELT 710 |2 stub | ||
100 | 1 | |a Hong, Yi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Delay-Doppler communications |b principles and applications |c Yi Hong, Tharaj Thaj, Emanuele Viterbo |
264 | 1 | |a London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom |b Academic Press, an imprint of Elsevier |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xx, 240 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Delay-Doppler Communications -- Copyright -- Contents -- List of figures -- Biography -- Yi Hong -- Tharaj Thaj -- Emanuele Viterbo -- Preface -- 1 Introduction -- 1.1 High-mobility wireless channels -- 1.2 Waveforms for high-mobility wireless channels -- 1.3 Bibliographical notes -- References -- 2 High-mobility wireless channels -- 2.1 Input-output model of the wireless channel -- 2.1.1 Geometric model -- 2.1.2 Delay-Doppler representation -- 2.2 Continuous-time baseband channel model -- 2.3 Discrete-time baseband channel model -- 2.4 Relation among different channel representations -- 2.5 Channel models for numerical simulations -- 2.5.1 Standard wireless mobile multipath propagation scenarios -- 2.5.2 Synthetic propagation scenario -- 2.6 Bibliographical notes -- References -- 3 OFDM review and its limitations -- 3.1 Introduction -- 3.2 OFDM system model -- 3.2.1 Generalized multicarrier modulation -- 3.2.2 OFDM transmitter -- 3.3 OFDM frequency domain input-output relation -- 3.4 Advantages and disadvantages of OFDM -- 3.4.1 High PAPR -- 3.4.2 High OOB -- 3.4.3 Sensitivity to CFO -- 3.5 OFDM in high-mobility multipath channels -- 3.6 Bibliographical notes -- References -- 4 Delay-Doppler modulation -- 4.1 System model -- 4.1.1 Parameter choice for OTFS systems -- 4.1.2 OTFS modulation -- 4.1.3 High-mobility channel distortion -- 4.1.4 OTFS demodulation -- 4.2 OTFS input-output relation with ideal waveforms -- 4.2.1 Time-frequency domain analysis -- 4.2.2 Delay-Doppler domain analysis -- 4.3 Matrix formulation for OTFS -- 4.3.1 OTFS modulation -- 4.3.2 OTFS modulation via the IDZT -- 4.3.3 OTFS demodulation -- 4.3.4 OTFS demodulation via the DZT -- 4.4 OTFS input-output relations in vectorized form -- 4.4.1 Time domain input-output relation -- 4.4.2 Time-frequency input-output relation -- 4.4.3 Delay-time input-output relation | |
505 | 8 | |a 4.4.4 Delay-Doppler input-output relation -- 4.5 Variants of OTFS -- 4.5.1 Reduced ZP OTFS -- RZP-OTFS: time domain analysis -- RZP-OTFS: delay-time domain analysis -- RZP-OTFS: delay-Doppler domain analysis -- RZP-OTFS: fractional delay and fractional Doppler shifts -- RZP-OTFS: integer delay and fractional Doppler shifts -- RZP-OTFS: integer delay and integer Doppler shifts -- 4.5.2 Reduced CP-OTFS -- RCP-OTFS: time domain analysis -- RCP-OTFS: delay-time and delay-Doppler domain analysis -- 4.5.3 CP-OTFS -- CP-OTFS: time domain analysis -- CP-OTFS: delay-time domain analysis -- CP-OTFS: delay-Doppler domain analysis -- CP-OTFS: fractional delay and fractional Doppler shifts -- CP-OTFS: integer delay and fractional Doppler shifts -- CP-OTFS: integer delay and integer Doppler shifts -- 4.5.4 ZP-OTFS -- ZP-OTFS: time domain analysis -- ZP-OTFS: delay-time and delay-Doppler domain analysis -- 4.6 Summary of channel representations and input-output relations for OTFS variants -- 4.6.1 Channel representations for OTFS variants -- 4.6.2 Delay-Doppler input-output relations for OTFS variants -- 4.6.3 Comparison of OTFS variants -- 4.7 Bibliographical notes -- References -- 5 Zak transform analysis for delay-Doppler communications -- 5.1 A brief review of the different Fourier transforms -- 5.2 The Zak transform -- 5.2.1 Properties of the Zak transform -- 5.2.2 The inverse Zak transform -- 5.3 The delay-Doppler basis functions -- 5.4 Zak transform in delay-Doppler communications -- 5.4.1 Single path delay-Doppler channel -- 5.4.2 Multipath and general delay-Doppler channel -- 5.4.3 Band- and time-limited delay-Doppler basis functions -- 5.4.3.1 Bandlimited basis functions -- 5.4.3.2 Time limited basis functions -- 5.4.3.3 Band- and time-limited basis functions -- 5.4.4 Communications using band- and time-limited signals -- 5.5 The discrete Zak transform | |
505 | 8 | |a 5.5.1 The inverse discrete Zak transform -- 5.5.2 Properties of the DZT -- 5.6 DZT in delay-Doppler communications -- 5.6.1 Receiver sampling -- 5.6.2 Time-windowing at RX and TX -- 5.6.3 RCP-OTFS with rectangular Tx and Rx window -- 5.6.4 RZP-OTFS with rectangular Tx and Rx window -- 5.7 Bibliographical notes -- References -- 6 Detection methods -- 6.1 Overview of OTFS input-output relation -- 6.2 Single-tap frequency domain equalizer -- 6.2.1 Single-tap equalizer for RCP-OTFS -- 6.2.2 Block-wise single-tap equalizer for CP-OTFS -- 6.2.3 Complexity -- 6.3 Linear minimum mean-square error detection -- 6.3.1 Delay-Doppler domain LMMSE detection -- 6.3.2 Time domain LMMSE detection -- 6.3.3 Complexity -- 6.4 Message passing detection -- 6.4.1 Message passing detection algorithm -- 6.4.2 Complexity -- 6.5 Maximum-ratio combining detection -- 6.5.1 Delay-Doppler domain MRC detection -- 6.5.2 Complexity -- Delay-Doppler implementation complexity -- Initial step complexity -- 6.5.3 Reduced complexity delay-time domain implementation -- 6.5.4 Complexity -- Delay-time implementation complexity -- Initial step complexity -- 6.5.5 Low complexity initial estimate -- Complexity for initial estimate -- 6.5.6 MRC detection for other OTFS variants -- 6.6 Iterative rake turbo decoder -- 6.7 Illustrative results and discussion -- 6.8 Bibliographical notes -- References -- 7 Channel estimation methods -- 7.1 Introduction -- 7.2 Embedded pilot delay-Doppler channel estimation -- 7.2.1 The integer Doppler case -- 7.2.2 The fractional Doppler case -- 7.2.3 Effect of channel estimation on spectral efficiency -- 7.3 Embedded pilot-aided delay-time domain channel estimation -- 7.3.1 Pilot placement -- 7.3.2 Delay-time channel estimation -- 7.3.3 Channel estimation complexity -- 7.3.4 Extension to other OTFS variants | |
505 | 8 | |a 7.4 Real-time OTFS software-defined radio implementation -- 7.4.1 Effect of DC offset on channel estimation -- 7.4.2 Effect of carrier frequency offset on channel estimation -- 7.4.3 Experiment setup, results, and discussion -- 7.5 Bibliographical notes -- References -- 8 MIMO and multiuser OTFS -- 8.1 Introduction -- 8.2 System model for MIMO-OTFS -- 8.2.1 Transmitter and receiver -- 8.2.2 Channel -- 8.2.3 Input-output relation for MIMO-OTFS -- 8.2.3.1 Time domain -- 8.2.3.2 Delay-Doppler domain -- 8.2.3.3 Delay-time domain -- 8.3 Detection methods -- 8.3.1 Linear minimum mean-square error detector -- 8.3.2 Message passing detector -- 8.3.3 Maximum-ratio combining detector -- 8.3.3.1 Delay-Doppler domain MRC detection -- 8.3.3.2 Reduced complexity delay-time domain implementation -- 8.3.3.3 MRC detection complexity -- 8.4 MIMO-OTFS channel estimation -- 8.5 Multiuser OTFS channel estimation -- 8.6 Numerical results and discussion -- 8.7 Bibliographical notes -- References -- 9 Conclusions and future directions -- 9.1 OTFS key advantages -- 9.2 Pros and cons of OTFS variants -- 9.3 Other research directions -- 9.3.1 Channel estimation and PAPR reduction -- 9.3.2 Channels with fast time-varying delay-Doppler paths -- 9.3.3 Multiuser communications -- 9.3.4 Massive MIMO-OTFS -- 9.3.5 OTFS for RadCom -- 9.3.6 Orthogonal time sequency multiplexing and precoding design -- 9.3.7 Machine learning for OTFS -- References -- A Notation and acronyms -- B Some useful matrix properties -- B.1 The DFT matrix -- B.2 Permutation matrices -- B.3 Circulant matrices -- B.4 Linear and circular convolutions -- B.5 2D transforms, doubly circulant block matrices, and 2D circular convolution -- C Some MATLAB code and examples -- C.1 Transmitter -- C.2 Channel -- C.3 Receiver -- C.4 Generate G matrix and received signal for OTFS variants -- Index -- Back Cover | |
700 | 1 | |a Thaj, Tharaj |e Verfasser |4 aut | |
700 | 1 | |a Viterbo, Emanuele |e Verfasser |0 (DE-588)1164476459 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Hong, Yi |t Delay-Doppler Communications |d San Diego : Elsevier Science & Technology,c2022 |n Druck-Ausgabe |z 978-0-323-85028-5 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033602590 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6887217 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2647202 |
---|---|
_version_ | 1821936324918116353 |
any_adam_object | |
author | Hong, Yi Thaj, Tharaj Viterbo, Emanuele |
author_GND | (DE-588)1164476459 |
author_facet | Hong, Yi Thaj, Tharaj Viterbo, Emanuele |
author_role | aut aut aut |
author_sort | Hong, Yi |
author_variant | y h yh t t tt e v ev |
building | Verbundindex |
bvnumber | BV048221853 |
classification_rvk | ZN 6560 |
classification_tum | ELT 710 |
collection | ZDB-30-PQE |
contents | Front Cover -- Delay-Doppler Communications -- Copyright -- Contents -- List of figures -- Biography -- Yi Hong -- Tharaj Thaj -- Emanuele Viterbo -- Preface -- 1 Introduction -- 1.1 High-mobility wireless channels -- 1.2 Waveforms for high-mobility wireless channels -- 1.3 Bibliographical notes -- References -- 2 High-mobility wireless channels -- 2.1 Input-output model of the wireless channel -- 2.1.1 Geometric model -- 2.1.2 Delay-Doppler representation -- 2.2 Continuous-time baseband channel model -- 2.3 Discrete-time baseband channel model -- 2.4 Relation among different channel representations -- 2.5 Channel models for numerical simulations -- 2.5.1 Standard wireless mobile multipath propagation scenarios -- 2.5.2 Synthetic propagation scenario -- 2.6 Bibliographical notes -- References -- 3 OFDM review and its limitations -- 3.1 Introduction -- 3.2 OFDM system model -- 3.2.1 Generalized multicarrier modulation -- 3.2.2 OFDM transmitter -- 3.3 OFDM frequency domain input-output relation -- 3.4 Advantages and disadvantages of OFDM -- 3.4.1 High PAPR -- 3.4.2 High OOB -- 3.4.3 Sensitivity to CFO -- 3.5 OFDM in high-mobility multipath channels -- 3.6 Bibliographical notes -- References -- 4 Delay-Doppler modulation -- 4.1 System model -- 4.1.1 Parameter choice for OTFS systems -- 4.1.2 OTFS modulation -- 4.1.3 High-mobility channel distortion -- 4.1.4 OTFS demodulation -- 4.2 OTFS input-output relation with ideal waveforms -- 4.2.1 Time-frequency domain analysis -- 4.2.2 Delay-Doppler domain analysis -- 4.3 Matrix formulation for OTFS -- 4.3.1 OTFS modulation -- 4.3.2 OTFS modulation via the IDZT -- 4.3.3 OTFS demodulation -- 4.3.4 OTFS demodulation via the DZT -- 4.4 OTFS input-output relations in vectorized form -- 4.4.1 Time domain input-output relation -- 4.4.2 Time-frequency input-output relation -- 4.4.3 Delay-time input-output relation 4.4.4 Delay-Doppler input-output relation -- 4.5 Variants of OTFS -- 4.5.1 Reduced ZP OTFS -- RZP-OTFS: time domain analysis -- RZP-OTFS: delay-time domain analysis -- RZP-OTFS: delay-Doppler domain analysis -- RZP-OTFS: fractional delay and fractional Doppler shifts -- RZP-OTFS: integer delay and fractional Doppler shifts -- RZP-OTFS: integer delay and integer Doppler shifts -- 4.5.2 Reduced CP-OTFS -- RCP-OTFS: time domain analysis -- RCP-OTFS: delay-time and delay-Doppler domain analysis -- 4.5.3 CP-OTFS -- CP-OTFS: time domain analysis -- CP-OTFS: delay-time domain analysis -- CP-OTFS: delay-Doppler domain analysis -- CP-OTFS: fractional delay and fractional Doppler shifts -- CP-OTFS: integer delay and fractional Doppler shifts -- CP-OTFS: integer delay and integer Doppler shifts -- 4.5.4 ZP-OTFS -- ZP-OTFS: time domain analysis -- ZP-OTFS: delay-time and delay-Doppler domain analysis -- 4.6 Summary of channel representations and input-output relations for OTFS variants -- 4.6.1 Channel representations for OTFS variants -- 4.6.2 Delay-Doppler input-output relations for OTFS variants -- 4.6.3 Comparison of OTFS variants -- 4.7 Bibliographical notes -- References -- 5 Zak transform analysis for delay-Doppler communications -- 5.1 A brief review of the different Fourier transforms -- 5.2 The Zak transform -- 5.2.1 Properties of the Zak transform -- 5.2.2 The inverse Zak transform -- 5.3 The delay-Doppler basis functions -- 5.4 Zak transform in delay-Doppler communications -- 5.4.1 Single path delay-Doppler channel -- 5.4.2 Multipath and general delay-Doppler channel -- 5.4.3 Band- and time-limited delay-Doppler basis functions -- 5.4.3.1 Bandlimited basis functions -- 5.4.3.2 Time limited basis functions -- 5.4.3.3 Band- and time-limited basis functions -- 5.4.4 Communications using band- and time-limited signals -- 5.5 The discrete Zak transform 5.5.1 The inverse discrete Zak transform -- 5.5.2 Properties of the DZT -- 5.6 DZT in delay-Doppler communications -- 5.6.1 Receiver sampling -- 5.6.2 Time-windowing at RX and TX -- 5.6.3 RCP-OTFS with rectangular Tx and Rx window -- 5.6.4 RZP-OTFS with rectangular Tx and Rx window -- 5.7 Bibliographical notes -- References -- 6 Detection methods -- 6.1 Overview of OTFS input-output relation -- 6.2 Single-tap frequency domain equalizer -- 6.2.1 Single-tap equalizer for RCP-OTFS -- 6.2.2 Block-wise single-tap equalizer for CP-OTFS -- 6.2.3 Complexity -- 6.3 Linear minimum mean-square error detection -- 6.3.1 Delay-Doppler domain LMMSE detection -- 6.3.2 Time domain LMMSE detection -- 6.3.3 Complexity -- 6.4 Message passing detection -- 6.4.1 Message passing detection algorithm -- 6.4.2 Complexity -- 6.5 Maximum-ratio combining detection -- 6.5.1 Delay-Doppler domain MRC detection -- 6.5.2 Complexity -- Delay-Doppler implementation complexity -- Initial step complexity -- 6.5.3 Reduced complexity delay-time domain implementation -- 6.5.4 Complexity -- Delay-time implementation complexity -- Initial step complexity -- 6.5.5 Low complexity initial estimate -- Complexity for initial estimate -- 6.5.6 MRC detection for other OTFS variants -- 6.6 Iterative rake turbo decoder -- 6.7 Illustrative results and discussion -- 6.8 Bibliographical notes -- References -- 7 Channel estimation methods -- 7.1 Introduction -- 7.2 Embedded pilot delay-Doppler channel estimation -- 7.2.1 The integer Doppler case -- 7.2.2 The fractional Doppler case -- 7.2.3 Effect of channel estimation on spectral efficiency -- 7.3 Embedded pilot-aided delay-time domain channel estimation -- 7.3.1 Pilot placement -- 7.3.2 Delay-time channel estimation -- 7.3.3 Channel estimation complexity -- 7.3.4 Extension to other OTFS variants 7.4 Real-time OTFS software-defined radio implementation -- 7.4.1 Effect of DC offset on channel estimation -- 7.4.2 Effect of carrier frequency offset on channel estimation -- 7.4.3 Experiment setup, results, and discussion -- 7.5 Bibliographical notes -- References -- 8 MIMO and multiuser OTFS -- 8.1 Introduction -- 8.2 System model for MIMO-OTFS -- 8.2.1 Transmitter and receiver -- 8.2.2 Channel -- 8.2.3 Input-output relation for MIMO-OTFS -- 8.2.3.1 Time domain -- 8.2.3.2 Delay-Doppler domain -- 8.2.3.3 Delay-time domain -- 8.3 Detection methods -- 8.3.1 Linear minimum mean-square error detector -- 8.3.2 Message passing detector -- 8.3.3 Maximum-ratio combining detector -- 8.3.3.1 Delay-Doppler domain MRC detection -- 8.3.3.2 Reduced complexity delay-time domain implementation -- 8.3.3.3 MRC detection complexity -- 8.4 MIMO-OTFS channel estimation -- 8.5 Multiuser OTFS channel estimation -- 8.6 Numerical results and discussion -- 8.7 Bibliographical notes -- References -- 9 Conclusions and future directions -- 9.1 OTFS key advantages -- 9.2 Pros and cons of OTFS variants -- 9.3 Other research directions -- 9.3.1 Channel estimation and PAPR reduction -- 9.3.2 Channels with fast time-varying delay-Doppler paths -- 9.3.3 Multiuser communications -- 9.3.4 Massive MIMO-OTFS -- 9.3.5 OTFS for RadCom -- 9.3.6 Orthogonal time sequency multiplexing and precoding design -- 9.3.7 Machine learning for OTFS -- References -- A Notation and acronyms -- B Some useful matrix properties -- B.1 The DFT matrix -- B.2 Permutation matrices -- B.3 Circulant matrices -- B.4 Linear and circular convolutions -- B.5 2D transforms, doubly circulant block matrices, and 2D circular convolution -- C Some MATLAB code and examples -- C.1 Transmitter -- C.2 Channel -- C.3 Receiver -- C.4 Generate G matrix and received signal for OTFS variants -- Index -- Back Cover |
ctrlnum | (ZDB-30-PQE)EBC6887217 (ZDB-30-PAD)EBC6887217 (ZDB-89-EBL)EBL6887217 (OCoLC)1299382780 (DE-599)BVBBV048221853 |
dewey-full | 621.38456 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.38456 |
dewey-search | 621.38456 |
dewey-sort | 3621.38456 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09232nam a2200457zc 4500</leader><controlfield tag="001">BV048221853</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323859660</subfield><subfield code="9">978-0-323-85966-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6887217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6887217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6887217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1299382780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221853</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.38456</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6560</subfield><subfield code="0">(DE-625)157572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 710</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Yi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Delay-Doppler communications</subfield><subfield code="b">principles and applications</subfield><subfield code="c">Yi Hong, Tharaj Thaj, Emanuele Viterbo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom ; San Diego, CA, United States ; Cambridge, MA, United States ; Kidlington, Oxford, United Kingdom</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 240 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Delay-Doppler Communications -- Copyright -- Contents -- List of figures -- Biography -- Yi Hong -- Tharaj Thaj -- Emanuele Viterbo -- Preface -- 1 Introduction -- 1.1 High-mobility wireless channels -- 1.2 Waveforms for high-mobility wireless channels -- 1.3 Bibliographical notes -- References -- 2 High-mobility wireless channels -- 2.1 Input-output model of the wireless channel -- 2.1.1 Geometric model -- 2.1.2 Delay-Doppler representation -- 2.2 Continuous-time baseband channel model -- 2.3 Discrete-time baseband channel model -- 2.4 Relation among different channel representations -- 2.5 Channel models for numerical simulations -- 2.5.1 Standard wireless mobile multipath propagation scenarios -- 2.5.2 Synthetic propagation scenario -- 2.6 Bibliographical notes -- References -- 3 OFDM review and its limitations -- 3.1 Introduction -- 3.2 OFDM system model -- 3.2.1 Generalized multicarrier modulation -- 3.2.2 OFDM transmitter -- 3.3 OFDM frequency domain input-output relation -- 3.4 Advantages and disadvantages of OFDM -- 3.4.1 High PAPR -- 3.4.2 High OOB -- 3.4.3 Sensitivity to CFO -- 3.5 OFDM in high-mobility multipath channels -- 3.6 Bibliographical notes -- References -- 4 Delay-Doppler modulation -- 4.1 System model -- 4.1.1 Parameter choice for OTFS systems -- 4.1.2 OTFS modulation -- 4.1.3 High-mobility channel distortion -- 4.1.4 OTFS demodulation -- 4.2 OTFS input-output relation with ideal waveforms -- 4.2.1 Time-frequency domain analysis -- 4.2.2 Delay-Doppler domain analysis -- 4.3 Matrix formulation for OTFS -- 4.3.1 OTFS modulation -- 4.3.2 OTFS modulation via the IDZT -- 4.3.3 OTFS demodulation -- 4.3.4 OTFS demodulation via the DZT -- 4.4 OTFS input-output relations in vectorized form -- 4.4.1 Time domain input-output relation -- 4.4.2 Time-frequency input-output relation -- 4.4.3 Delay-time input-output relation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.4 Delay-Doppler input-output relation -- 4.5 Variants of OTFS -- 4.5.1 Reduced ZP OTFS -- RZP-OTFS: time domain analysis -- RZP-OTFS: delay-time domain analysis -- RZP-OTFS: delay-Doppler domain analysis -- RZP-OTFS: fractional delay and fractional Doppler shifts -- RZP-OTFS: integer delay and fractional Doppler shifts -- RZP-OTFS: integer delay and integer Doppler shifts -- 4.5.2 Reduced CP-OTFS -- RCP-OTFS: time domain analysis -- RCP-OTFS: delay-time and delay-Doppler domain analysis -- 4.5.3 CP-OTFS -- CP-OTFS: time domain analysis -- CP-OTFS: delay-time domain analysis -- CP-OTFS: delay-Doppler domain analysis -- CP-OTFS: fractional delay and fractional Doppler shifts -- CP-OTFS: integer delay and fractional Doppler shifts -- CP-OTFS: integer delay and integer Doppler shifts -- 4.5.4 ZP-OTFS -- ZP-OTFS: time domain analysis -- ZP-OTFS: delay-time and delay-Doppler domain analysis -- 4.6 Summary of channel representations and input-output relations for OTFS variants -- 4.6.1 Channel representations for OTFS variants -- 4.6.2 Delay-Doppler input-output relations for OTFS variants -- 4.6.3 Comparison of OTFS variants -- 4.7 Bibliographical notes -- References -- 5 Zak transform analysis for delay-Doppler communications -- 5.1 A brief review of the different Fourier transforms -- 5.2 The Zak transform -- 5.2.1 Properties of the Zak transform -- 5.2.2 The inverse Zak transform -- 5.3 The delay-Doppler basis functions -- 5.4 Zak transform in delay-Doppler communications -- 5.4.1 Single path delay-Doppler channel -- 5.4.2 Multipath and general delay-Doppler channel -- 5.4.3 Band- and time-limited delay-Doppler basis functions -- 5.4.3.1 Bandlimited basis functions -- 5.4.3.2 Time limited basis functions -- 5.4.3.3 Band- and time-limited basis functions -- 5.4.4 Communications using band- and time-limited signals -- 5.5 The discrete Zak transform</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5.1 The inverse discrete Zak transform -- 5.5.2 Properties of the DZT -- 5.6 DZT in delay-Doppler communications -- 5.6.1 Receiver sampling -- 5.6.2 Time-windowing at RX and TX -- 5.6.3 RCP-OTFS with rectangular Tx and Rx window -- 5.6.4 RZP-OTFS with rectangular Tx and Rx window -- 5.7 Bibliographical notes -- References -- 6 Detection methods -- 6.1 Overview of OTFS input-output relation -- 6.2 Single-tap frequency domain equalizer -- 6.2.1 Single-tap equalizer for RCP-OTFS -- 6.2.2 Block-wise single-tap equalizer for CP-OTFS -- 6.2.3 Complexity -- 6.3 Linear minimum mean-square error detection -- 6.3.1 Delay-Doppler domain LMMSE detection -- 6.3.2 Time domain LMMSE detection -- 6.3.3 Complexity -- 6.4 Message passing detection -- 6.4.1 Message passing detection algorithm -- 6.4.2 Complexity -- 6.5 Maximum-ratio combining detection -- 6.5.1 Delay-Doppler domain MRC detection -- 6.5.2 Complexity -- Delay-Doppler implementation complexity -- Initial step complexity -- 6.5.3 Reduced complexity delay-time domain implementation -- 6.5.4 Complexity -- Delay-time implementation complexity -- Initial step complexity -- 6.5.5 Low complexity initial estimate -- Complexity for initial estimate -- 6.5.6 MRC detection for other OTFS variants -- 6.6 Iterative rake turbo decoder -- 6.7 Illustrative results and discussion -- 6.8 Bibliographical notes -- References -- 7 Channel estimation methods -- 7.1 Introduction -- 7.2 Embedded pilot delay-Doppler channel estimation -- 7.2.1 The integer Doppler case -- 7.2.2 The fractional Doppler case -- 7.2.3 Effect of channel estimation on spectral efficiency -- 7.3 Embedded pilot-aided delay-time domain channel estimation -- 7.3.1 Pilot placement -- 7.3.2 Delay-time channel estimation -- 7.3.3 Channel estimation complexity -- 7.3.4 Extension to other OTFS variants</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4 Real-time OTFS software-defined radio implementation -- 7.4.1 Effect of DC offset on channel estimation -- 7.4.2 Effect of carrier frequency offset on channel estimation -- 7.4.3 Experiment setup, results, and discussion -- 7.5 Bibliographical notes -- References -- 8 MIMO and multiuser OTFS -- 8.1 Introduction -- 8.2 System model for MIMO-OTFS -- 8.2.1 Transmitter and receiver -- 8.2.2 Channel -- 8.2.3 Input-output relation for MIMO-OTFS -- 8.2.3.1 Time domain -- 8.2.3.2 Delay-Doppler domain -- 8.2.3.3 Delay-time domain -- 8.3 Detection methods -- 8.3.1 Linear minimum mean-square error detector -- 8.3.2 Message passing detector -- 8.3.3 Maximum-ratio combining detector -- 8.3.3.1 Delay-Doppler domain MRC detection -- 8.3.3.2 Reduced complexity delay-time domain implementation -- 8.3.3.3 MRC detection complexity -- 8.4 MIMO-OTFS channel estimation -- 8.5 Multiuser OTFS channel estimation -- 8.6 Numerical results and discussion -- 8.7 Bibliographical notes -- References -- 9 Conclusions and future directions -- 9.1 OTFS key advantages -- 9.2 Pros and cons of OTFS variants -- 9.3 Other research directions -- 9.3.1 Channel estimation and PAPR reduction -- 9.3.2 Channels with fast time-varying delay-Doppler paths -- 9.3.3 Multiuser communications -- 9.3.4 Massive MIMO-OTFS -- 9.3.5 OTFS for RadCom -- 9.3.6 Orthogonal time sequency multiplexing and precoding design -- 9.3.7 Machine learning for OTFS -- References -- A Notation and acronyms -- B Some useful matrix properties -- B.1 The DFT matrix -- B.2 Permutation matrices -- B.3 Circulant matrices -- B.4 Linear and circular convolutions -- B.5 2D transforms, doubly circulant block matrices, and 2D circular convolution -- C Some MATLAB code and examples -- C.1 Transmitter -- C.2 Channel -- C.3 Receiver -- C.4 Generate G matrix and received signal for OTFS variants -- Index -- Back Cover</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thaj, Tharaj</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Viterbo, Emanuele</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1164476459</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Hong, Yi</subfield><subfield code="t">Delay-Doppler Communications</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2022</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-323-85028-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602590</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6887217</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221853 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:38:55Z |
institution | BVB |
isbn | 9780323859660 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602590 |
oclc_num | 1299382780 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xx, 240 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spellingShingle | Hong, Yi Thaj, Tharaj Viterbo, Emanuele Delay-Doppler communications principles and applications Front Cover -- Delay-Doppler Communications -- Copyright -- Contents -- List of figures -- Biography -- Yi Hong -- Tharaj Thaj -- Emanuele Viterbo -- Preface -- 1 Introduction -- 1.1 High-mobility wireless channels -- 1.2 Waveforms for high-mobility wireless channels -- 1.3 Bibliographical notes -- References -- 2 High-mobility wireless channels -- 2.1 Input-output model of the wireless channel -- 2.1.1 Geometric model -- 2.1.2 Delay-Doppler representation -- 2.2 Continuous-time baseband channel model -- 2.3 Discrete-time baseband channel model -- 2.4 Relation among different channel representations -- 2.5 Channel models for numerical simulations -- 2.5.1 Standard wireless mobile multipath propagation scenarios -- 2.5.2 Synthetic propagation scenario -- 2.6 Bibliographical notes -- References -- 3 OFDM review and its limitations -- 3.1 Introduction -- 3.2 OFDM system model -- 3.2.1 Generalized multicarrier modulation -- 3.2.2 OFDM transmitter -- 3.3 OFDM frequency domain input-output relation -- 3.4 Advantages and disadvantages of OFDM -- 3.4.1 High PAPR -- 3.4.2 High OOB -- 3.4.3 Sensitivity to CFO -- 3.5 OFDM in high-mobility multipath channels -- 3.6 Bibliographical notes -- References -- 4 Delay-Doppler modulation -- 4.1 System model -- 4.1.1 Parameter choice for OTFS systems -- 4.1.2 OTFS modulation -- 4.1.3 High-mobility channel distortion -- 4.1.4 OTFS demodulation -- 4.2 OTFS input-output relation with ideal waveforms -- 4.2.1 Time-frequency domain analysis -- 4.2.2 Delay-Doppler domain analysis -- 4.3 Matrix formulation for OTFS -- 4.3.1 OTFS modulation -- 4.3.2 OTFS modulation via the IDZT -- 4.3.3 OTFS demodulation -- 4.3.4 OTFS demodulation via the DZT -- 4.4 OTFS input-output relations in vectorized form -- 4.4.1 Time domain input-output relation -- 4.4.2 Time-frequency input-output relation -- 4.4.3 Delay-time input-output relation 4.4.4 Delay-Doppler input-output relation -- 4.5 Variants of OTFS -- 4.5.1 Reduced ZP OTFS -- RZP-OTFS: time domain analysis -- RZP-OTFS: delay-time domain analysis -- RZP-OTFS: delay-Doppler domain analysis -- RZP-OTFS: fractional delay and fractional Doppler shifts -- RZP-OTFS: integer delay and fractional Doppler shifts -- RZP-OTFS: integer delay and integer Doppler shifts -- 4.5.2 Reduced CP-OTFS -- RCP-OTFS: time domain analysis -- RCP-OTFS: delay-time and delay-Doppler domain analysis -- 4.5.3 CP-OTFS -- CP-OTFS: time domain analysis -- CP-OTFS: delay-time domain analysis -- CP-OTFS: delay-Doppler domain analysis -- CP-OTFS: fractional delay and fractional Doppler shifts -- CP-OTFS: integer delay and fractional Doppler shifts -- CP-OTFS: integer delay and integer Doppler shifts -- 4.5.4 ZP-OTFS -- ZP-OTFS: time domain analysis -- ZP-OTFS: delay-time and delay-Doppler domain analysis -- 4.6 Summary of channel representations and input-output relations for OTFS variants -- 4.6.1 Channel representations for OTFS variants -- 4.6.2 Delay-Doppler input-output relations for OTFS variants -- 4.6.3 Comparison of OTFS variants -- 4.7 Bibliographical notes -- References -- 5 Zak transform analysis for delay-Doppler communications -- 5.1 A brief review of the different Fourier transforms -- 5.2 The Zak transform -- 5.2.1 Properties of the Zak transform -- 5.2.2 The inverse Zak transform -- 5.3 The delay-Doppler basis functions -- 5.4 Zak transform in delay-Doppler communications -- 5.4.1 Single path delay-Doppler channel -- 5.4.2 Multipath and general delay-Doppler channel -- 5.4.3 Band- and time-limited delay-Doppler basis functions -- 5.4.3.1 Bandlimited basis functions -- 5.4.3.2 Time limited basis functions -- 5.4.3.3 Band- and time-limited basis functions -- 5.4.4 Communications using band- and time-limited signals -- 5.5 The discrete Zak transform 5.5.1 The inverse discrete Zak transform -- 5.5.2 Properties of the DZT -- 5.6 DZT in delay-Doppler communications -- 5.6.1 Receiver sampling -- 5.6.2 Time-windowing at RX and TX -- 5.6.3 RCP-OTFS with rectangular Tx and Rx window -- 5.6.4 RZP-OTFS with rectangular Tx and Rx window -- 5.7 Bibliographical notes -- References -- 6 Detection methods -- 6.1 Overview of OTFS input-output relation -- 6.2 Single-tap frequency domain equalizer -- 6.2.1 Single-tap equalizer for RCP-OTFS -- 6.2.2 Block-wise single-tap equalizer for CP-OTFS -- 6.2.3 Complexity -- 6.3 Linear minimum mean-square error detection -- 6.3.1 Delay-Doppler domain LMMSE detection -- 6.3.2 Time domain LMMSE detection -- 6.3.3 Complexity -- 6.4 Message passing detection -- 6.4.1 Message passing detection algorithm -- 6.4.2 Complexity -- 6.5 Maximum-ratio combining detection -- 6.5.1 Delay-Doppler domain MRC detection -- 6.5.2 Complexity -- Delay-Doppler implementation complexity -- Initial step complexity -- 6.5.3 Reduced complexity delay-time domain implementation -- 6.5.4 Complexity -- Delay-time implementation complexity -- Initial step complexity -- 6.5.5 Low complexity initial estimate -- Complexity for initial estimate -- 6.5.6 MRC detection for other OTFS variants -- 6.6 Iterative rake turbo decoder -- 6.7 Illustrative results and discussion -- 6.8 Bibliographical notes -- References -- 7 Channel estimation methods -- 7.1 Introduction -- 7.2 Embedded pilot delay-Doppler channel estimation -- 7.2.1 The integer Doppler case -- 7.2.2 The fractional Doppler case -- 7.2.3 Effect of channel estimation on spectral efficiency -- 7.3 Embedded pilot-aided delay-time domain channel estimation -- 7.3.1 Pilot placement -- 7.3.2 Delay-time channel estimation -- 7.3.3 Channel estimation complexity -- 7.3.4 Extension to other OTFS variants 7.4 Real-time OTFS software-defined radio implementation -- 7.4.1 Effect of DC offset on channel estimation -- 7.4.2 Effect of carrier frequency offset on channel estimation -- 7.4.3 Experiment setup, results, and discussion -- 7.5 Bibliographical notes -- References -- 8 MIMO and multiuser OTFS -- 8.1 Introduction -- 8.2 System model for MIMO-OTFS -- 8.2.1 Transmitter and receiver -- 8.2.2 Channel -- 8.2.3 Input-output relation for MIMO-OTFS -- 8.2.3.1 Time domain -- 8.2.3.2 Delay-Doppler domain -- 8.2.3.3 Delay-time domain -- 8.3 Detection methods -- 8.3.1 Linear minimum mean-square error detector -- 8.3.2 Message passing detector -- 8.3.3 Maximum-ratio combining detector -- 8.3.3.1 Delay-Doppler domain MRC detection -- 8.3.3.2 Reduced complexity delay-time domain implementation -- 8.3.3.3 MRC detection complexity -- 8.4 MIMO-OTFS channel estimation -- 8.5 Multiuser OTFS channel estimation -- 8.6 Numerical results and discussion -- 8.7 Bibliographical notes -- References -- 9 Conclusions and future directions -- 9.1 OTFS key advantages -- 9.2 Pros and cons of OTFS variants -- 9.3 Other research directions -- 9.3.1 Channel estimation and PAPR reduction -- 9.3.2 Channels with fast time-varying delay-Doppler paths -- 9.3.3 Multiuser communications -- 9.3.4 Massive MIMO-OTFS -- 9.3.5 OTFS for RadCom -- 9.3.6 Orthogonal time sequency multiplexing and precoding design -- 9.3.7 Machine learning for OTFS -- References -- A Notation and acronyms -- B Some useful matrix properties -- B.1 The DFT matrix -- B.2 Permutation matrices -- B.3 Circulant matrices -- B.4 Linear and circular convolutions -- B.5 2D transforms, doubly circulant block matrices, and 2D circular convolution -- C Some MATLAB code and examples -- C.1 Transmitter -- C.2 Channel -- C.3 Receiver -- C.4 Generate G matrix and received signal for OTFS variants -- Index -- Back Cover |
title | Delay-Doppler communications principles and applications |
title_auth | Delay-Doppler communications principles and applications |
title_exact_search | Delay-Doppler communications principles and applications |
title_full | Delay-Doppler communications principles and applications Yi Hong, Tharaj Thaj, Emanuele Viterbo |
title_fullStr | Delay-Doppler communications principles and applications Yi Hong, Tharaj Thaj, Emanuele Viterbo |
title_full_unstemmed | Delay-Doppler communications principles and applications Yi Hong, Tharaj Thaj, Emanuele Viterbo |
title_short | Delay-Doppler communications |
title_sort | delay doppler communications principles and applications |
title_sub | principles and applications |
work_keys_str_mv | AT hongyi delaydopplercommunicationsprinciplesandapplications AT thajtharaj delaydopplercommunicationsprinciplesandapplications AT viterboemanuele delaydopplercommunicationsprinciplesandapplications |