Biomedical and business applications using artificial neural networks and machine learning:
"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card pu...
Gespeichert in:
Weitere beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hershey, Pennsylvania
IGI Global
[2022]
|
Schlagwörter: | |
Links: | https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 https://doi.org/10.4018/978-1-7998-8455-2 |
Zusammenfassung: | "This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns. |
Beschreibung: | Includes bibliographical references and index Section 1. Introduction. Chapter 1. Overview of multi-factor prediction using deep neural networks, machine learning, and their open-source software -- Section 2. Biomedical applications. Chapter 2. Survey of applications of neural networks and machine learning to COVID-19 predictions ; Chapter 3. Comparing deep neural networks and gradient boosting for pneumonia detection using chest x-rays ; Chapter 4. Cardiovascular applications of artificial intelligence in research, diagnosis, and disease management ; Chapter 5. Predictions for COVID-19 with deep learning models of long short-term memory (LSTM) ; Chapter 6. Protein-protein interactions (PPI) via deep neural network (DNN) ; Chapter 7. US medical expense analysis through frequency and severity bootstrapping and regression model -- Section 3. Business applications. Chapter 8. Airbnb (air bed and breakfast) listing analysis through machine learning techniques ; Chapter 9. Automobile fatal accident and insurance claim analysis through artificial neural network ; Chapter 10. U.S. unemployment rate prediction by economic indices in the COVID-19 pandemic using neural network, random forest, and generalized linear regression ; Chapter 11. Applying machine learning methods for credit card payment default prediction with cost savings ; Chapter 12. Inflation rate modelling through a hybrid model of seasonal autoregressive moving average and multilayer perceptron neural network ; Chapter 13. Value analysis and prediction through machine learning techniques for popular basketball brands. - Mode of access: World Wide Web |
Umfang: | 1 Online-Ressource (394 Seiten) |
ISBN: | 9781799884576 |
DOI: | 10.4018/978-1-7998-8455-2 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047813561 | ||
003 | DE-604 | ||
005 | 20230515 | ||
007 | cr|uuu---uuuuu | ||
008 | 220203s2022 xx o|||| 00||| eng d | ||
020 | |a 9781799884576 |9 978-1-79988-457-6 | ||
024 | 7 | |a 10.4018/978-1-7998-8455-2 |2 doi | |
035 | |a (ZDB-98-IGB)00270789 | ||
035 | |a (OCoLC)1296345703 | ||
035 | |a (DE-599)BVBBV047813561 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-706 |a DE-1050 |a DE-1049 |a DE-83 | ||
082 | 0 | |a 610.285 | |
084 | |a ST 640 |0 (DE-625)143686: |2 rvk | ||
245 | 1 | 0 | |a Biomedical and business applications using artificial neural networks and machine learning |c Richard S. Segall and Gao Niu, editor |
264 | 1 | |a Hershey, Pennsylvania |b IGI Global |c [2022] | |
300 | |a 1 Online-Ressource (394 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Section 1. Introduction. Chapter 1. Overview of multi-factor prediction using deep neural networks, machine learning, and their open-source software -- Section 2. Biomedical applications. Chapter 2. Survey of applications of neural networks and machine learning to COVID-19 predictions ; Chapter 3. Comparing deep neural networks and gradient boosting for pneumonia detection using chest x-rays ; Chapter 4. Cardiovascular applications of artificial intelligence in research, diagnosis, and disease management ; Chapter 5. Predictions for COVID-19 with deep learning models of long short-term memory (LSTM) ; Chapter 6. Protein-protein interactions (PPI) via deep neural network (DNN) ; Chapter 7. US medical expense analysis through frequency and severity bootstrapping and regression model -- Section 3. Business applications. Chapter 8. Airbnb (air bed and breakfast) listing analysis through machine learning techniques ; Chapter 9. Automobile fatal accident and insurance claim analysis through artificial neural network ; Chapter 10. U.S. unemployment rate prediction by economic indices in the COVID-19 pandemic using neural network, random forest, and generalized linear regression ; Chapter 11. Applying machine learning methods for credit card payment default prediction with cost savings ; Chapter 12. Inflation rate modelling through a hybrid model of seasonal autoregressive moving average and multilayer perceptron neural network ; Chapter 13. Value analysis and prediction through machine learning techniques for popular basketball brands. - Mode of access: World Wide Web | ||
520 | |a "This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns. | ||
650 | 4 | |a Medicine |x Research |x Data processing | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Medizin |0 (DE-588)4038243-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Medizin |0 (DE-588)4038243-6 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Niu, Gao |0 (DE-588)120416360X |4 edt | |
700 | 1 | |a Segall, Richard S. |d 1949- |0 (DE-588)1079222448 |4 edt | |
710 | 2 | |a IGI Global |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1799884570 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-7998-8455-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1799884554 |
856 | 4 | 0 | |u https://doi.org/10.4018/978-1-7998-8455-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB | ||
912 | |a ZDB-1-IGE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033197013 | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-1050 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-898 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-1049 |p ZDB-1-IGE |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-83 |p ZDB-98-IGB |q TUB_EBS_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/978-1-7998-8455-2 |l DE-706 |p ZDB-1-IGE |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2609517 |
---|---|
_version_ | 1821936248833441793 |
any_adam_object | |
author2 | Niu, Gao Segall, Richard S. 1949- |
author2_role | edt edt |
author2_variant | g n gn r s s rs rss |
author_GND | (DE-588)120416360X (DE-588)1079222448 |
author_facet | Niu, Gao Segall, Richard S. 1949- |
building | Verbundindex |
bvnumber | BV047813561 |
classification_rvk | ST 640 |
collection | ZDB-98-IGB ZDB-1-IGE |
ctrlnum | (ZDB-98-IGB)00270789 (OCoLC)1296345703 (DE-599)BVBBV047813561 |
dewey-full | 610.285 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.285 |
dewey-search | 610.285 |
dewey-sort | 3610.285 |
dewey-tens | 610 - Medicine and health |
discipline | Informatik Medizin |
doi_str_mv | 10.4018/978-1-7998-8455-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04545nam a2200601zc 4500</leader><controlfield tag="001">BV047813561</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230515 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220203s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781799884576</subfield><subfield code="9">978-1-79988-457-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/978-1-7998-8455-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00270789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296345703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047813561</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.285</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 640</subfield><subfield code="0">(DE-625)143686:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomedical and business applications using artificial neural networks and machine learning</subfield><subfield code="c">Richard S. Segall and Gao Niu, editor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania</subfield><subfield code="b">IGI Global</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (394 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Section 1. Introduction. Chapter 1. Overview of multi-factor prediction using deep neural networks, machine learning, and their open-source software -- Section 2. Biomedical applications. Chapter 2. Survey of applications of neural networks and machine learning to COVID-19 predictions ; Chapter 3. Comparing deep neural networks and gradient boosting for pneumonia detection using chest x-rays ; Chapter 4. Cardiovascular applications of artificial intelligence in research, diagnosis, and disease management ; Chapter 5. Predictions for COVID-19 with deep learning models of long short-term memory (LSTM) ; Chapter 6. Protein-protein interactions (PPI) via deep neural network (DNN) ; Chapter 7. US medical expense analysis through frequency and severity bootstrapping and regression model -- Section 3. Business applications. Chapter 8. Airbnb (air bed and breakfast) listing analysis through machine learning techniques ; Chapter 9. Automobile fatal accident and insurance claim analysis through artificial neural network ; Chapter 10. U.S. unemployment rate prediction by economic indices in the COVID-19 pandemic using neural network, random forest, and generalized linear regression ; Chapter 11. Applying machine learning methods for credit card payment default prediction with cost savings ; Chapter 12. Inflation rate modelling through a hybrid model of seasonal autoregressive moving average and multilayer perceptron neural network ; Chapter 13. Value analysis and prediction through machine learning techniques for popular basketball brands. - Mode of access: World Wide Web</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medicine</subfield><subfield code="x">Research</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medizin</subfield><subfield code="0">(DE-588)4038243-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Medizin</subfield><subfield code="0">(DE-588)4038243-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Gao</subfield><subfield code="0">(DE-588)120416360X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Segall, Richard S.</subfield><subfield code="d">1949-</subfield><subfield code="0">(DE-588)1079222448</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">IGI Global</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1799884570</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-7998-8455-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1799884554</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-IGE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033197013</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-1049</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-83</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUB_EBS_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/978-1-7998-8455-2</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-1-IGE</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047813561 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:29:10Z |
institution | BVB |
isbn | 9781799884576 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033197013 |
oclc_num | 1296345703 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-1050 DE-1049 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-1050 DE-1049 DE-83 |
physical | 1 Online-Ressource (394 Seiten) |
psigel | ZDB-98-IGB ZDB-1-IGE ZDB-98-IGB FHR_PDA_IGB_Kauf ZDB-98-IGB TUB_EBS_IGB ZDB-98-IGB TUM_Paketkauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | IGI Global |
record_format | marc |
spellingShingle | Biomedical and business applications using artificial neural networks and machine learning Medicine Research Data processing Neural networks (Computer science) Maschinelles Lernen (DE-588)4193754-5 gnd Medizin (DE-588)4038243-6 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4038243-6 |
title | Biomedical and business applications using artificial neural networks and machine learning |
title_auth | Biomedical and business applications using artificial neural networks and machine learning |
title_exact_search | Biomedical and business applications using artificial neural networks and machine learning |
title_full | Biomedical and business applications using artificial neural networks and machine learning Richard S. Segall and Gao Niu, editor |
title_fullStr | Biomedical and business applications using artificial neural networks and machine learning Richard S. Segall and Gao Niu, editor |
title_full_unstemmed | Biomedical and business applications using artificial neural networks and machine learning Richard S. Segall and Gao Niu, editor |
title_short | Biomedical and business applications using artificial neural networks and machine learning |
title_sort | biomedical and business applications using artificial neural networks and machine learning |
topic | Medicine Research Data processing Neural networks (Computer science) Maschinelles Lernen (DE-588)4193754-5 gnd Medizin (DE-588)4038243-6 gnd |
topic_facet | Medicine Research Data processing Neural networks (Computer science) Maschinelles Lernen Medizin |
url | https://doi.org/10.4018/978-1-7998-8455-2 |
work_keys_str_mv | AT niugao biomedicalandbusinessapplicationsusingartificialneuralnetworksandmachinelearning AT segallrichards biomedicalandbusinessapplicationsusingartificialneuralnetworksandmachinelearning AT igiglobal biomedicalandbusinessapplicationsusingartificialneuralnetworksandmachinelearning |