Detecting regime change in computational finance: data science, machine learning and algorithmic trading
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Milton
CRC Press LLC
2020
|
Links: | https://doi.org/10.1201/9781003087595 https://doi.org/10.1201/9781003087595 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (164 Seiten) |
ISBN: | 9781003087595 9781000220360 |
DOI: | 10.1201/9781003087595 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047688209 | ||
003 | DE-604 | ||
005 | 20230403 | ||
007 | cr|uuu---uuuuu | ||
008 | 220118s2020 xx o|||| 00||| eng d | ||
020 | |a 9781003087595 |9 978-1-00-308759-5 | ||
020 | |a 9781000220360 |9 978-1-00-022036-0 | ||
024 | 7 | |a 10.1201/9781003087595 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6317470 | ||
035 | |a (ZDB-30-PAD)EBC6317470 | ||
035 | |a (ZDB-89-EBL)EBL6317470 | ||
035 | |a (OCoLC)1197761351 | ||
035 | |a (DE-599)BVBBV047688209 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
100 | 1 | |a Chen, Jun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Detecting regime change in computational finance |b data science, machine learning and algorithmic trading |
264 | 1 | |a Milton |b CRC Press LLC |c 2020 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (164 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Research Objectives -- 1.3 Book Structure -- Chapter 2 Background and Literature Survey -- 2.1 Regime Change -- 2.1.1 Regime Change Detection Methods -- 2.2 Directional Change -- 2.2.1 The Concept of Directional Change -- 2.2.2 Research Using Directional Change -- 2.2.3 Directional Change Indicators -- 2.2.3.1 Total Price Movement -- 2.2.3.2 Time for Completion of a Trend -- 2.2.3.3 Time-Adjusted Return of DC -- 2.3 Machine Learning Techniques -- 2.3.1 Hidden Markov Model -- 2.3.1.1 Definition of HMM -- 2.3.1.2 Parameters of HMM -- 2.3.1.3 Expectation-Maximization Algorithm -- 2.3.2 Naïve Bayes Classifier -- 2.3.2.1 Definition of Naïve Bayes Classifier -- Chapter 3 Regime Change Detection Using Directional Change Indicators -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 DC Indicator -- 3.2.2 Time Series Indicator -- 3.3 Experiments -- 3.3.1 Data Sets -- 3.3.2 Hidden Markov Model -- 3.4 Empirical Results -- 3.4.1 EUR-GBP -- 3.4.2 GBP-USD -- 3.4.3 EUR-USD -- 3.4.4 Distribution of the Indicator R -- 3.4.5 Discussion -- 3.5 Conclusion -- Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Summarising Financial Data in DC -- 4.2.2 Detecting Regime Changes through HMM -- 4.2.3 Comparing Market Regimes in an Indicator Space -- 4.3 Empirical Study -- 4.3.1 Data Sets -- 4.3.2 Summarising Data under DC -- 4.3.3 Detecting Regime Changes under HMM -- 4.3.4 Observing Market Regimes in the Normalised Indicator Space -- 4.4 Results and Discussions -- 4.4.1 Market Regimes in the Indicator Space -- 4.4.2 Market Regimes under Different Thresholds -- 4.4.3 Discussion -- 4.5 Conclusions | |
505 | 8 | |a Chapter 5 Tracking Regime Changes Using Directional Change Indicators -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Tracking DC Trends -- 5.2.2 Use of a Naïve Bayes Classifier -- 5.3 Experiment Setup -- 5.3.1 Data -- 5.3.2 Regime Changes on the Data -- 5.4 Empirical Results -- 5.4.1 Calculating Probability -- 5.4.2 B-Simple for Regime Classification -- 5.4.3 B-Strict for Regime Classification -- 5.4.4 Tracked Regime Changes -- 5.4.4.1 Tracked Regime Changes on DJIA Index -- 5.4.4.2 Tracked Regime Changes on FTSE 100 Index -- 5.4.4.3 Tracked Regime Changes on S& -- P 500 -- 5.4.5 Discussion -- 5.5 Conclusion -- Chapter 6 Algorithmic Trading Based on Regime Change Tracking -- 6.1 Overview -- 6.2 Methodology -- 6.2.1 Regime Tracking Information -- 6.2.2 Trading Algorithm JC1 -- 6.2.3 Trading Algorithm JC2 -- 6.2.4 Control Algorithm CT1 -- 6.3 Experimental Setup -- 6.3.1 Data -- 6.3.2 Experimental Parameters -- 6.3.3 Money Management -- 6.4 Experiment Results -- 6.4.1 Number of Trades -- 6.4.2 Final Wealth -- 6.4.3 Maximum Drawdown -- 6.5 Discussions -- 6.5.1 The Primary Goals Are Achieved -- 6.5.2 Future Work: Regime Tracking for Better Trading Algorithms -- 6.6 Conclusions -- Chapter 7 Conclusions -- 7.1 Summary of Work Done -- 7.2 Take-Home Messages -- 7.3 Future Research -- 7.3.1 Research Directions -- Appendices -- Appendix A A Formal Definition of Directional Change -- Appendix B Extended Results of Chapter 3 -- Appendix C Experiment Summary of Chapter 4 -- Appendix D Detected Regime Changes in Chapter 4 -- Bibliography -- Index | |
700 | 1 | |a Tsang, Edward P. K. |e Sonstige |0 (DE-588)134150465 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Chen, Jun |t Detecting Regime Change in Computational Finance |d Milton : CRC Press LLC,c2020 |z 9780367536282 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003087595 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-7-CSC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033072225 | |
966 | e | |u https://doi.org/10.1201/9781003087595 |l DE-739 |p ZDB-7-CSC |q UPA_PDA_CSC_Kauf2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818988668172369920 |
---|---|
any_adam_object | |
author | Chen, Jun |
author_GND | (DE-588)134150465 |
author_facet | Chen, Jun |
author_role | aut |
author_sort | Chen, Jun |
author_variant | j c jc |
building | Verbundindex |
bvnumber | BV047688209 |
collection | ZDB-30-PQE ZDB-7-CSC |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Research Objectives -- 1.3 Book Structure -- Chapter 2 Background and Literature Survey -- 2.1 Regime Change -- 2.1.1 Regime Change Detection Methods -- 2.2 Directional Change -- 2.2.1 The Concept of Directional Change -- 2.2.2 Research Using Directional Change -- 2.2.3 Directional Change Indicators -- 2.2.3.1 Total Price Movement -- 2.2.3.2 Time for Completion of a Trend -- 2.2.3.3 Time-Adjusted Return of DC -- 2.3 Machine Learning Techniques -- 2.3.1 Hidden Markov Model -- 2.3.1.1 Definition of HMM -- 2.3.1.2 Parameters of HMM -- 2.3.1.3 Expectation-Maximization Algorithm -- 2.3.2 Naïve Bayes Classifier -- 2.3.2.1 Definition of Naïve Bayes Classifier -- Chapter 3 Regime Change Detection Using Directional Change Indicators -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 DC Indicator -- 3.2.2 Time Series Indicator -- 3.3 Experiments -- 3.3.1 Data Sets -- 3.3.2 Hidden Markov Model -- 3.4 Empirical Results -- 3.4.1 EUR-GBP -- 3.4.2 GBP-USD -- 3.4.3 EUR-USD -- 3.4.4 Distribution of the Indicator R -- 3.4.5 Discussion -- 3.5 Conclusion -- Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Summarising Financial Data in DC -- 4.2.2 Detecting Regime Changes through HMM -- 4.2.3 Comparing Market Regimes in an Indicator Space -- 4.3 Empirical Study -- 4.3.1 Data Sets -- 4.3.2 Summarising Data under DC -- 4.3.3 Detecting Regime Changes under HMM -- 4.3.4 Observing Market Regimes in the Normalised Indicator Space -- 4.4 Results and Discussions -- 4.4.1 Market Regimes in the Indicator Space -- 4.4.2 Market Regimes under Different Thresholds -- 4.4.3 Discussion -- 4.5 Conclusions Chapter 5 Tracking Regime Changes Using Directional Change Indicators -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Tracking DC Trends -- 5.2.2 Use of a Naïve Bayes Classifier -- 5.3 Experiment Setup -- 5.3.1 Data -- 5.3.2 Regime Changes on the Data -- 5.4 Empirical Results -- 5.4.1 Calculating Probability -- 5.4.2 B-Simple for Regime Classification -- 5.4.3 B-Strict for Regime Classification -- 5.4.4 Tracked Regime Changes -- 5.4.4.1 Tracked Regime Changes on DJIA Index -- 5.4.4.2 Tracked Regime Changes on FTSE 100 Index -- 5.4.4.3 Tracked Regime Changes on S& -- P 500 -- 5.4.5 Discussion -- 5.5 Conclusion -- Chapter 6 Algorithmic Trading Based on Regime Change Tracking -- 6.1 Overview -- 6.2 Methodology -- 6.2.1 Regime Tracking Information -- 6.2.2 Trading Algorithm JC1 -- 6.2.3 Trading Algorithm JC2 -- 6.2.4 Control Algorithm CT1 -- 6.3 Experimental Setup -- 6.3.1 Data -- 6.3.2 Experimental Parameters -- 6.3.3 Money Management -- 6.4 Experiment Results -- 6.4.1 Number of Trades -- 6.4.2 Final Wealth -- 6.4.3 Maximum Drawdown -- 6.5 Discussions -- 6.5.1 The Primary Goals Are Achieved -- 6.5.2 Future Work: Regime Tracking for Better Trading Algorithms -- 6.6 Conclusions -- Chapter 7 Conclusions -- 7.1 Summary of Work Done -- 7.2 Take-Home Messages -- 7.3 Future Research -- 7.3.1 Research Directions -- Appendices -- Appendix A A Formal Definition of Directional Change -- Appendix B Extended Results of Chapter 3 -- Appendix C Experiment Summary of Chapter 4 -- Appendix D Detected Regime Changes in Chapter 4 -- Bibliography -- Index |
ctrlnum | (ZDB-30-PQE)EBC6317470 (ZDB-30-PAD)EBC6317470 (ZDB-89-EBL)EBL6317470 (OCoLC)1197761351 (DE-599)BVBBV047688209 |
doi_str_mv | 10.1201/9781003087595 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05032nam a2200433zc 4500</leader><controlfield tag="001">BV047688209</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230403 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220118s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003087595</subfield><subfield code="9">978-1-00-308759-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000220360</subfield><subfield code="9">978-1-00-022036-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003087595</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6317470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6317470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6317470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1197761351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047688209</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detecting regime change in computational finance</subfield><subfield code="b">data science, machine learning and algorithmic trading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">CRC Press LLC</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (164 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Research Objectives -- 1.3 Book Structure -- Chapter 2 Background and Literature Survey -- 2.1 Regime Change -- 2.1.1 Regime Change Detection Methods -- 2.2 Directional Change -- 2.2.1 The Concept of Directional Change -- 2.2.2 Research Using Directional Change -- 2.2.3 Directional Change Indicators -- 2.2.3.1 Total Price Movement -- 2.2.3.2 Time for Completion of a Trend -- 2.2.3.3 Time-Adjusted Return of DC -- 2.3 Machine Learning Techniques -- 2.3.1 Hidden Markov Model -- 2.3.1.1 Definition of HMM -- 2.3.1.2 Parameters of HMM -- 2.3.1.3 Expectation-Maximization Algorithm -- 2.3.2 Naïve Bayes Classifier -- 2.3.2.1 Definition of Naïve Bayes Classifier -- Chapter 3 Regime Change Detection Using Directional Change Indicators -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 DC Indicator -- 3.2.2 Time Series Indicator -- 3.3 Experiments -- 3.3.1 Data Sets -- 3.3.2 Hidden Markov Model -- 3.4 Empirical Results -- 3.4.1 EUR-GBP -- 3.4.2 GBP-USD -- 3.4.3 EUR-USD -- 3.4.4 Distribution of the Indicator R -- 3.4.5 Discussion -- 3.5 Conclusion -- Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Summarising Financial Data in DC -- 4.2.2 Detecting Regime Changes through HMM -- 4.2.3 Comparing Market Regimes in an Indicator Space -- 4.3 Empirical Study -- 4.3.1 Data Sets -- 4.3.2 Summarising Data under DC -- 4.3.3 Detecting Regime Changes under HMM -- 4.3.4 Observing Market Regimes in the Normalised Indicator Space -- 4.4 Results and Discussions -- 4.4.1 Market Regimes in the Indicator Space -- 4.4.2 Market Regimes under Different Thresholds -- 4.4.3 Discussion -- 4.5 Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5 Tracking Regime Changes Using Directional Change Indicators -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Tracking DC Trends -- 5.2.2 Use of a Naïve Bayes Classifier -- 5.3 Experiment Setup -- 5.3.1 Data -- 5.3.2 Regime Changes on the Data -- 5.4 Empirical Results -- 5.4.1 Calculating Probability -- 5.4.2 B-Simple for Regime Classification -- 5.4.3 B-Strict for Regime Classification -- 5.4.4 Tracked Regime Changes -- 5.4.4.1 Tracked Regime Changes on DJIA Index -- 5.4.4.2 Tracked Regime Changes on FTSE 100 Index -- 5.4.4.3 Tracked Regime Changes on S&amp -- P 500 -- 5.4.5 Discussion -- 5.5 Conclusion -- Chapter 6 Algorithmic Trading Based on Regime Change Tracking -- 6.1 Overview -- 6.2 Methodology -- 6.2.1 Regime Tracking Information -- 6.2.2 Trading Algorithm JC1 -- 6.2.3 Trading Algorithm JC2 -- 6.2.4 Control Algorithm CT1 -- 6.3 Experimental Setup -- 6.3.1 Data -- 6.3.2 Experimental Parameters -- 6.3.3 Money Management -- 6.4 Experiment Results -- 6.4.1 Number of Trades -- 6.4.2 Final Wealth -- 6.4.3 Maximum Drawdown -- 6.5 Discussions -- 6.5.1 The Primary Goals Are Achieved -- 6.5.2 Future Work: Regime Tracking for Better Trading Algorithms -- 6.6 Conclusions -- Chapter 7 Conclusions -- 7.1 Summary of Work Done -- 7.2 Take-Home Messages -- 7.3 Future Research -- 7.3.1 Research Directions -- Appendices -- Appendix A A Formal Definition of Directional Change -- Appendix B Extended Results of Chapter 3 -- Appendix C Experiment Summary of Chapter 4 -- Appendix D Detected Regime Changes in Chapter 4 -- Bibliography -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsang, Edward P. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)134150465</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Chen, Jun</subfield><subfield code="t">Detecting Regime Change in Computational Finance</subfield><subfield code="d">Milton : CRC Press LLC,c2020</subfield><subfield code="z">9780367536282</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003087595</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-CSC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033072225</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003087595</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-7-CSC</subfield><subfield code="q">UPA_PDA_CSC_Kauf2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047688209 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:26:14Z |
institution | BVB |
isbn | 9781003087595 9781000220360 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033072225 |
oclc_num | 1197761351 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | 1 Online-Ressource (164 Seiten) |
psigel | ZDB-30-PQE ZDB-7-CSC ZDB-7-CSC UPA_PDA_CSC_Kauf2022 |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | CRC Press LLC |
record_format | marc |
spelling | Chen, Jun Verfasser aut Detecting regime change in computational finance data science, machine learning and algorithmic trading Milton CRC Press LLC 2020 ©2021 1 Online-Ressource (164 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Research Objectives -- 1.3 Book Structure -- Chapter 2 Background and Literature Survey -- 2.1 Regime Change -- 2.1.1 Regime Change Detection Methods -- 2.2 Directional Change -- 2.2.1 The Concept of Directional Change -- 2.2.2 Research Using Directional Change -- 2.2.3 Directional Change Indicators -- 2.2.3.1 Total Price Movement -- 2.2.3.2 Time for Completion of a Trend -- 2.2.3.3 Time-Adjusted Return of DC -- 2.3 Machine Learning Techniques -- 2.3.1 Hidden Markov Model -- 2.3.1.1 Definition of HMM -- 2.3.1.2 Parameters of HMM -- 2.3.1.3 Expectation-Maximization Algorithm -- 2.3.2 Naïve Bayes Classifier -- 2.3.2.1 Definition of Naïve Bayes Classifier -- Chapter 3 Regime Change Detection Using Directional Change Indicators -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 DC Indicator -- 3.2.2 Time Series Indicator -- 3.3 Experiments -- 3.3.1 Data Sets -- 3.3.2 Hidden Markov Model -- 3.4 Empirical Results -- 3.4.1 EUR-GBP -- 3.4.2 GBP-USD -- 3.4.3 EUR-USD -- 3.4.4 Distribution of the Indicator R -- 3.4.5 Discussion -- 3.5 Conclusion -- Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Summarising Financial Data in DC -- 4.2.2 Detecting Regime Changes through HMM -- 4.2.3 Comparing Market Regimes in an Indicator Space -- 4.3 Empirical Study -- 4.3.1 Data Sets -- 4.3.2 Summarising Data under DC -- 4.3.3 Detecting Regime Changes under HMM -- 4.3.4 Observing Market Regimes in the Normalised Indicator Space -- 4.4 Results and Discussions -- 4.4.1 Market Regimes in the Indicator Space -- 4.4.2 Market Regimes under Different Thresholds -- 4.4.3 Discussion -- 4.5 Conclusions Chapter 5 Tracking Regime Changes Using Directional Change Indicators -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Tracking DC Trends -- 5.2.2 Use of a Naïve Bayes Classifier -- 5.3 Experiment Setup -- 5.3.1 Data -- 5.3.2 Regime Changes on the Data -- 5.4 Empirical Results -- 5.4.1 Calculating Probability -- 5.4.2 B-Simple for Regime Classification -- 5.4.3 B-Strict for Regime Classification -- 5.4.4 Tracked Regime Changes -- 5.4.4.1 Tracked Regime Changes on DJIA Index -- 5.4.4.2 Tracked Regime Changes on FTSE 100 Index -- 5.4.4.3 Tracked Regime Changes on S& -- P 500 -- 5.4.5 Discussion -- 5.5 Conclusion -- Chapter 6 Algorithmic Trading Based on Regime Change Tracking -- 6.1 Overview -- 6.2 Methodology -- 6.2.1 Regime Tracking Information -- 6.2.2 Trading Algorithm JC1 -- 6.2.3 Trading Algorithm JC2 -- 6.2.4 Control Algorithm CT1 -- 6.3 Experimental Setup -- 6.3.1 Data -- 6.3.2 Experimental Parameters -- 6.3.3 Money Management -- 6.4 Experiment Results -- 6.4.1 Number of Trades -- 6.4.2 Final Wealth -- 6.4.3 Maximum Drawdown -- 6.5 Discussions -- 6.5.1 The Primary Goals Are Achieved -- 6.5.2 Future Work: Regime Tracking for Better Trading Algorithms -- 6.6 Conclusions -- Chapter 7 Conclusions -- 7.1 Summary of Work Done -- 7.2 Take-Home Messages -- 7.3 Future Research -- 7.3.1 Research Directions -- Appendices -- Appendix A A Formal Definition of Directional Change -- Appendix B Extended Results of Chapter 3 -- Appendix C Experiment Summary of Chapter 4 -- Appendix D Detected Regime Changes in Chapter 4 -- Bibliography -- Index Tsang, Edward P. K. Sonstige (DE-588)134150465 oth Erscheint auch als Druck-Ausgabe Chen, Jun Detecting Regime Change in Computational Finance Milton : CRC Press LLC,c2020 9780367536282 https://doi.org/10.1201/9781003087595 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chen, Jun Detecting regime change in computational finance data science, machine learning and algorithmic trading Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Research Objectives -- 1.3 Book Structure -- Chapter 2 Background and Literature Survey -- 2.1 Regime Change -- 2.1.1 Regime Change Detection Methods -- 2.2 Directional Change -- 2.2.1 The Concept of Directional Change -- 2.2.2 Research Using Directional Change -- 2.2.3 Directional Change Indicators -- 2.2.3.1 Total Price Movement -- 2.2.3.2 Time for Completion of a Trend -- 2.2.3.3 Time-Adjusted Return of DC -- 2.3 Machine Learning Techniques -- 2.3.1 Hidden Markov Model -- 2.3.1.1 Definition of HMM -- 2.3.1.2 Parameters of HMM -- 2.3.1.3 Expectation-Maximization Algorithm -- 2.3.2 Naïve Bayes Classifier -- 2.3.2.1 Definition of Naïve Bayes Classifier -- Chapter 3 Regime Change Detection Using Directional Change Indicators -- 3.1 Introduction -- 3.2 Methodology -- 3.2.1 DC Indicator -- 3.2.2 Time Series Indicator -- 3.3 Experiments -- 3.3.1 Data Sets -- 3.3.2 Hidden Markov Model -- 3.4 Empirical Results -- 3.4.1 EUR-GBP -- 3.4.2 GBP-USD -- 3.4.3 EUR-USD -- 3.4.4 Distribution of the Indicator R -- 3.4.5 Discussion -- 3.5 Conclusion -- Chapter 4 Classification of Normal and Abnormal Regimes in Financial Markets -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Summarising Financial Data in DC -- 4.2.2 Detecting Regime Changes through HMM -- 4.2.3 Comparing Market Regimes in an Indicator Space -- 4.3 Empirical Study -- 4.3.1 Data Sets -- 4.3.2 Summarising Data under DC -- 4.3.3 Detecting Regime Changes under HMM -- 4.3.4 Observing Market Regimes in the Normalised Indicator Space -- 4.4 Results and Discussions -- 4.4.1 Market Regimes in the Indicator Space -- 4.4.2 Market Regimes under Different Thresholds -- 4.4.3 Discussion -- 4.5 Conclusions Chapter 5 Tracking Regime Changes Using Directional Change Indicators -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Tracking DC Trends -- 5.2.2 Use of a Naïve Bayes Classifier -- 5.3 Experiment Setup -- 5.3.1 Data -- 5.3.2 Regime Changes on the Data -- 5.4 Empirical Results -- 5.4.1 Calculating Probability -- 5.4.2 B-Simple for Regime Classification -- 5.4.3 B-Strict for Regime Classification -- 5.4.4 Tracked Regime Changes -- 5.4.4.1 Tracked Regime Changes on DJIA Index -- 5.4.4.2 Tracked Regime Changes on FTSE 100 Index -- 5.4.4.3 Tracked Regime Changes on S& -- P 500 -- 5.4.5 Discussion -- 5.5 Conclusion -- Chapter 6 Algorithmic Trading Based on Regime Change Tracking -- 6.1 Overview -- 6.2 Methodology -- 6.2.1 Regime Tracking Information -- 6.2.2 Trading Algorithm JC1 -- 6.2.3 Trading Algorithm JC2 -- 6.2.4 Control Algorithm CT1 -- 6.3 Experimental Setup -- 6.3.1 Data -- 6.3.2 Experimental Parameters -- 6.3.3 Money Management -- 6.4 Experiment Results -- 6.4.1 Number of Trades -- 6.4.2 Final Wealth -- 6.4.3 Maximum Drawdown -- 6.5 Discussions -- 6.5.1 The Primary Goals Are Achieved -- 6.5.2 Future Work: Regime Tracking for Better Trading Algorithms -- 6.6 Conclusions -- Chapter 7 Conclusions -- 7.1 Summary of Work Done -- 7.2 Take-Home Messages -- 7.3 Future Research -- 7.3.1 Research Directions -- Appendices -- Appendix A A Formal Definition of Directional Change -- Appendix B Extended Results of Chapter 3 -- Appendix C Experiment Summary of Chapter 4 -- Appendix D Detected Regime Changes in Chapter 4 -- Bibliography -- Index |
title | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_auth | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_exact_search | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_full | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_fullStr | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_full_unstemmed | Detecting regime change in computational finance data science, machine learning and algorithmic trading |
title_short | Detecting regime change in computational finance |
title_sort | detecting regime change in computational finance data science machine learning and algorithmic trading |
title_sub | data science, machine learning and algorithmic trading |
url | https://doi.org/10.1201/9781003087595 |
work_keys_str_mv | AT chenjun detectingregimechangeincomputationalfinancedatasciencemachinelearningandalgorithmictrading AT tsangedwardpk detectingregimechangeincomputationalfinancedatasciencemachinelearningandalgorithmictrading |