Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Hyperbolic flows
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Fisher, Todd (VerfasserIn), Hasselblatt, Boris 1961- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Berlin European Mathematical Society [2019]
Schriftenreihe:Zurich lectures in advanced mathematics
Schlagwörter:
Dynamisches System
Hyperbolisches Differentialgleichungssystem
Hyperbolisches System
Ergodische Kette
Anosov flow
Axiom A
Markov partitions
entropy
equilibrium states
ergodic theory
expansiveness
geodesic flow
hyperbolicity
rigidity
shadowing
specification
stable manifold
symbolic flows
topological dynamics
topological pressure
Links:http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:xiv, 723 Seiten Illustrationen 24 cm x 17 cm
ISBN:9783037192009
3037192003
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV047601908
003 DE-604
005 20211119
007 t|
008 211118s2019 xx a||| |||| 00||| eng d
015 |a 19,N47  |2 dnb 
016 7 |a 1199629170  |2 DE-101 
020 |a 9783037192009  |c Broschur : EUR 78.00 (DE), EUR 80.20 (AT)  |9 978-3-03719-200-9 
020 |a 3037192003  |9 3-03719-200-3 
024 3 |a 9783037192009 
035 |a (OCoLC)1175885428 
035 |a (DE-599)DNB1199629170 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-19 
084 |a SK 810  |0 (DE-625)143257:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Fisher, Todd  |e Verfasser  |0 (DE-588)119901284X  |4 aut 
245 1 0 |a Hyperbolic flows  |c Todd Fisher, Boris Hasselblatt 
264 1 |a Berlin  |b European Mathematical Society  |c [2019] 
300 |a xiv, 723 Seiten  |b Illustrationen  |c 24 cm x 17 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Zurich lectures in advanced mathematics 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Hyperbolisches Differentialgleichungssystem  |0 (DE-588)4496581-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Hyperbolisches System  |0 (DE-588)4191897-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Ergodische Kette  |0 (DE-588)4402921-4  |2 gnd  |9 rswk-swf 
653 |a Anosov flow 
653 |a Axiom A 
653 |a Markov partitions 
653 |a entropy 
653 |a equilibrium states 
653 |a ergodic theory 
653 |a expansiveness 
653 |a geodesic flow 
653 |a hyperbolicity 
653 |a rigidity 
653 |a shadowing 
653 |a specification 
653 |a stable manifold 
653 |a symbolic flows 
653 |a topological dynamics 
653 |a topological pressure 
689 0 0 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 1 |a Ergodische Kette  |0 (DE-588)4402921-4  |D s 
689 0 2 |a Hyperbolisches System  |0 (DE-588)4191897-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Hyperbolisches Differentialgleichungssystem  |0 (DE-588)4496581-3  |D s 
689 1 |5 DE-604 
700 1 |a Hasselblatt, Boris  |d 1961-  |e Verfasser  |0 (DE-588)137987471  |4 aut 
710 2 |a European Mathematical Society Publishing House ETH-Zentrum SEW A27  |0 (DE-588)1066118477  |4 pbl 
856 4 2 |m B:DE-101  |q application/pdf  |u http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf  |3 Inhaltsverzeichnis 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032987005 

Datensatz im Suchindex

_version_ 1819372040234205184
adam_text CONTENTS ACKNOWLEDGMENTS .................................................................................................. VII 0 INTRODUCTION ...................................................................................................... 1 0.1 ABOUT THIS BOOK ..................................................................................... 1 0.2 CONTINUOUS AND DISCRETE TIME ................................................................ 3 0.3 HISTORICAL SKETCH .................................................................................. 6 I FLOWS .................................................................................................................. 15 1 TOPOLOGICAL DYNAMICS ..................................................................................... 19 1.1 BASIC PROPERTIES ..................................................................................... 19 1.2 TIME CHANGE, FLOW UNDER A FUNCTION, AND SECTIONS ............................ 34 1.3 CONJUGACY AND ORBIT EQUIVALENCE ......................................................... 39 1.4 ATTRACTORS AND REPELLERS ......................................................................... 48 1.5 RECURRENCE PROPERTIES AND CHAIN DECOMPOSITION ................................ 60 1.6 TRANSITIVITY, MINIMALITY, AND TOPOLOGICAL MIXING ................................ 78 1.7 EXPANSIVE FLOWS ..................................................................................... 88 1.8 WEAKENING EXPANSIVITY* ..................................................................... 94 1.9 SYMBOLIC FLOWS, CODING ......................................................................... 98 2 HYPERBOLIC GEODESIC FLOW* ................................................................................ 113 2.1 ISOMETRIES, GEODESICS, AND HOROCYCLES OF THE HYPERBOLIC PLANE AND DISK 113 2.2 DYNAMICS OF THE NATURAL FLOWS ................................................................ 120 2.3 COMPACT FACTORS ......................................................................................... 129 2.4 THE GEODESIC FLOW ON COMPACT HYPERBOLIC SURFACES ......................... 131 2.5 SYMMETRIC SPACES ...................................................................................... 136 2.6 HAMILTONIAN SYSTEMS ............................................................................ 141 3 ERGODIC THEORY ................................................................................................... 155 3.1 FLOW-INVARIANT MEASURES AND MEASURE-PRESERVING TRANSFORMATIONS . 155 XII CONTENTS 3.2 ERGODIC THEOREMS ....................................................................................... 163 3.3 ERGODICITY ............................................................................................... 171 3.4 MIXING ...................................................................................................... 179 3.5 INVARIANT MEASURES UNDER TIME CHANGE .................................................... 194 3.6 FLOWS UNDER A FUNCTION ............................................................................. 196 3.7 SPECTRAL THEORY* ......................................................................................... 203 4 ENTROPY, PRESSURE, AND EQUILIBRIUM STATES .......................................................... 211 4.1 MEASURE-THEORETIC ENTROPY ....................................................................... 211 4.2 TOPOLOGICAL ENTROPY ................................................................................... 216 4.3 TOPOLOGICAL PRESSURE AND EQUILIBRIUM STATES .......................................... 232 4.4 EQUILIBRIUM STATES FOR TIME-T MAPS* ....................................................... 243 II HYPERBOLIC FLOWS ...............................................................................................247 INTRODUCTION TO PART II ................................................................................................ 249 5 HYPERBOLICITY ...................................................................................................... 251 5.1 HYPERBOLIC SETS AND BASIC PROPERTIES ...................................................... 252 5.2 PHYSICAL FLOWS: GEODESIC FLOWS, MAGNETIC FLOWS, BILLIARDS, GASES, AND LINKAGES ...................................................................................................... 263 5.3 SHADOWING, EXPANSIVITY, CLOSING, SPECIFICATION, AND AXIOM A .... 293 5.4 THE ANOSOV SHADOWING THEOREM, STRUCTURAL AND Q-STABILITY .... 309 5.5 LOCAL LINEARIZATION: THE HARTMAN-GROBMAN THEOREM ....................... 322 5.6 THE MATHER-MOSER METHOD* ...................................................................324 6 INVARIANT FOLIATIONS ............................................................................................. 331 6.1 STABLE AND UNSTABLE FOLIATIONS ...................................................................332 6.2 GLOBAL FOLIATIONS, LOCAL MAXIMALITY, BOWEN BRACKET .............................336 6.3 LIVSHITZ THEORY ......................................................................................... 348 6.4 HOLDER CONTINUITY OF ORBIT EQUIVALENCE ...................................................352 6.5 HORSESHOES AND ATTRACTORS .......................................................................... 355 6.6 MARKOV PARTITIONS ...................................................................................... 363 6.7 FAILURE OF LOCAL MAXIMALITY* ................................................................... 371 6.8 SMOOTH LINEARIZATION AND NORMAL FORMS* ................................................374 6.9 DIFFERENTIABILITY IN THE HARTMAN-GROBMAN THEOREM* .......................... 390 7 ERGODIC THEORY OF HYPERBOLIC SETS .......................................................................399 7.1 THE HOPF ARGUMENT, ABSOLUTE CONTINUITY, MIXING ..................................... 400 CONTENTS XIII 7.2 STABLE ERGODICITY* ...................................................................................... 410 7.3 SPECIFICATION, UNIQUENESS OF EQUILIBRIUM STATES ................................... 420 7.4 SINAI-RUELLE-BOWEN MEASURES ................................................................435 7.5 HAMENSTADT-MARGULIS MEASURE* ............................................................ 446 7.6 ASYMPTOTIC ORBIT GROWTH* ......................................................................453 7.7 RATES OF MIXING* ...................................................................................... 461 8 ANOSOV FLOWS ...................................................................................................... 471 8.1 ANOSOV DIFFEOMORPHISMS, SUSPENSIONS, AND MIXING .............................. 472 8.2 FOULON-HANDEL-THURSTON SURGERY ......................................................... 476 8.3 ANOMALOUS ANOSOV FLOWS ......................................................................... 486 8.4 CODIMENSION- 1 ANOSOV FLOWS ................................................................493 8.5 {^-COVERED ANOSOV 3 -FLOWS ...................................................................... 502 8.6 HOROCYCLE AND UNSTABLE FLOWS* ................................................................509 9 RIGIDITY ............................................................................................................... 531 9.1 MULTIDIMENSIONAL TIME: COMMUTING FLOWS ............................................. 533 9.2 CONJUGACIES ............................................................................................... 543 9.3 ENTROPY AND LYAPUNOV EXPONENTS .............................................................548 9.4 OPTIMAL REGULARITY OF THE INVARIANT SUBBUNDLES ...................................... 553 9.5 LONGITUDINAL REGULARITY ............................................................................562 9.6 SHARPNESS FOR TRANSVERSELY SYMPLECTIC FLOWS, THREADING ....................... 566 9.7 SMOOTH INVARIANT FOLIATIONS ...................................................................... 572 9.8 GODBILLON-VEY INVARIANTS* ...................................................................... 582 APPENDICES A MEASURE-THEORETIC ENTROPY OF MAPS ................................................................... 591 A.L LEBESGUE SPACES ..................................................................................... 591 A.2 ENTROPY AND CONDITIONAL ENTROPY ............................................................ 595 A. 3 PROPERTIES OF ENTROPY ............................................................................... 606 B HYPERBOLIC MAPS AND INVARIANT MANIFOLDS ...................................................... 625 B. L THE CONTRACTION MAPPING PRINCIPLE ..................................................... 625 B.2 GENERALIZED EIGENSPACES ........................................................................628 B.3 THE SPECTRUM OF A LINEAR MAP .................................................................. 630 B.4 HYPERBOLIC LINEAR MAPS ............................................................................ 633 B.5 ADMISSIBLE MANIFOLDS: THE HADAMARD METHOD ......................................638 B.6 THE INCLINATION LEMMA AND HOMOCLINIC TANGLES .................................... 655 CONTENTS XIV B.7 ABSOLUTE CONTINUITY ...................................................................................659 HINTS AND ANSWERS TO THE EXERCISES ........................................................................... 671 BIBLIOGRAPHY ............................................................................................................679 INDEX OF PERSONS .........................................................................................................703 INDEX ............................................................................................................................ 707 INDEX OF THEOREMS ...................................................................................................... 721
any_adam_object 1
author Fisher, Todd
Hasselblatt, Boris 1961-
author_GND (DE-588)119901284X
(DE-588)137987471
author_facet Fisher, Todd
Hasselblatt, Boris 1961-
author_role aut
aut
author_sort Fisher, Todd
author_variant t f tf
b h bh
building Verbundindex
bvnumber BV047601908
classification_rvk SK 810
ctrlnum (OCoLC)1175885428
(DE-599)DNB1199629170
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nam a2200697 c 4500</leader><controlfield tag="001">BV047601908</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211119 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">211118s2019 xx a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N47</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1199629170</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037192009</subfield><subfield code="c">Broschur : EUR 78.00 (DE), EUR 80.20 (AT)</subfield><subfield code="9">978-3-03719-200-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037192003</subfield><subfield code="9">3-03719-200-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783037192009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1175885428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1199629170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fisher, Todd</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119901284X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic flows</subfield><subfield code="c">Todd Fisher, Boris Hasselblatt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 723 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Zurich lectures in advanced mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4496581-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodische Kette</subfield><subfield code="0">(DE-588)4402921-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Anosov flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Axiom A</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Markov partitions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">entropy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">equilibrium states</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ergodic theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">expansiveness</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">geodesic flow</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hyperbolicity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">rigidity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shadowing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">specification</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stable manifold</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">symbolic flows</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">topological dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">topological pressure</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ergodische Kette</subfield><subfield code="0">(DE-588)4402921-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4496581-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasselblatt, Boris</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137987471</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">European Mathematical Society Publishing House ETH-Zentrum SEW A27</subfield><subfield code="0">(DE-588)1066118477</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032987005&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032987005</subfield></datafield></record></collection>
id DE-604.BV047601908
illustrated Illustrated
indexdate 2024-12-20T19:23:29Z
institution BVB
institution_GND (DE-588)1066118477
isbn 9783037192009
3037192003
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032987005
oclc_num 1175885428
open_access_boolean
owner DE-19
DE-BY-UBM
owner_facet DE-19
DE-BY-UBM
physical xiv, 723 Seiten Illustrationen 24 cm x 17 cm
publishDate 2019
publishDateSearch 2019
publishDateSort 2019
publisher European Mathematical Society
record_format marc
series2 Zurich lectures in advanced mathematics
spellingShingle Fisher, Todd
Hasselblatt, Boris 1961-
Hyperbolic flows
Dynamisches System (DE-588)4013396-5 gnd
Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 gnd
Hyperbolisches System (DE-588)4191897-6 gnd
Ergodische Kette (DE-588)4402921-4 gnd
subject_GND (DE-588)4013396-5
(DE-588)4496581-3
(DE-588)4191897-6
(DE-588)4402921-4
title Hyperbolic flows
title_auth Hyperbolic flows
title_exact_search Hyperbolic flows
title_full Hyperbolic flows Todd Fisher, Boris Hasselblatt
title_fullStr Hyperbolic flows Todd Fisher, Boris Hasselblatt
title_full_unstemmed Hyperbolic flows Todd Fisher, Boris Hasselblatt
title_short Hyperbolic flows
title_sort hyperbolic flows
topic Dynamisches System (DE-588)4013396-5 gnd
Hyperbolisches Differentialgleichungssystem (DE-588)4496581-3 gnd
Hyperbolisches System (DE-588)4191897-6 gnd
Ergodische Kette (DE-588)4402921-4 gnd
topic_facet Dynamisches System
Hyperbolisches Differentialgleichungssystem
Hyperbolisches System
Ergodische Kette
url http://digitale-objekte.hbz-nrw.de/storage2/2020/10/01/file_8/8922272.pdf
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032987005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT fishertodd hyperbolicflows
AT hasselblattboris hyperbolicflows
AT europeanmathematicalsocietypublishinghouseethzentrumsewa27 hyperbolicflows
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt