Fundamentals of deep learning: designing next-generation machine intelligence algorithms
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Beijing
O'Reilly
May 2022
|
Ausgabe: | second edition |
Schlagwörter: | |
Umfang: | xiii, 372 Seiten Illustrationen 232 mm |
ISBN: | 9781492082187 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047583125 | ||
003 | DE-604 | ||
005 | 20240410 | ||
007 | t| | ||
008 | 211110s2022 xx a||| |||| 00||| eng d | ||
020 | |a 9781492082187 |9 978-1-492-08218-7 | ||
024 | 3 | |a 9781492082187 | |
035 | |a (OCoLC)1337130472 | ||
035 | |a (DE-599)BVBBV047583125 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-20 |a DE-1102 |a DE-573 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Buduma, Nithin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of deep learning |b designing next-generation machine intelligence algorithms |c Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio |
250 | |a second edition | ||
264 | 1 | |a Beijing |b O'Reilly |c May 2022 | |
300 | |a xiii, 372 Seiten |b Illustrationen |c 232 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a bisacsh / COMPUTERS / Data Science / Machine Learning | |
650 | 4 | |a bisacsh / COMPUTERS / Artificial Intelligence / General | |
650 | 4 | |a bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence | |
650 | 4 | |a bisacsh / COMPUTERS / Machine Theory | |
650 | 4 | |a bisacsh / COMPUTERS / Data Science / Neural Networks | |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Buduma, Nikhil |d 1994- |e Verfasser |0 (DE-588)1136495533 |4 aut | |
700 | 1 | |a Papa, Joe |e Verfasser |0 (DE-588)1250286557 |4 aut | |
700 | 1 | |a Locascio, Nicholas |e Sonstige |0 (DE-588)1138387258 |4 oth | |
780 | 0 | 0 | |i Vorangegangen ist |z 978-1-491-92561-4 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032968472 |
Datensatz im Suchindex
_version_ | 1823932148631994368 |
---|---|
adam_text | |
any_adam_object | |
author | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe |
author_GND | (DE-588)1136495533 (DE-588)1250286557 (DE-588)1138387258 |
author_facet | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe |
author_role | aut aut aut |
author_sort | Buduma, Nithin |
author_variant | n b nb n b nb j p jp |
building | Verbundindex |
bvnumber | BV047583125 |
classification_rvk | ST 302 |
ctrlnum | (OCoLC)1337130472 (DE-599)BVBBV047583125 |
discipline | Informatik |
edition | second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047583125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240410</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">211110s2022 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492082187</subfield><subfield code="9">978-1-492-08218-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781492082187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1337130472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047583125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buduma, Nithin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of deep learning</subfield><subfield code="b">designing next-generation machine intelligence algorithms</subfield><subfield code="c">Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">May 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 372 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">232 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / COMPUTERS / Data Science / Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / COMPUTERS / Artificial Intelligence / General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / COMPUTERS / Machine Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh / COMPUTERS / Data Science / Neural Networks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buduma, Nikhil</subfield><subfield code="d">1994-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136495533</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papa, Joe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1250286557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Locascio, Nicholas</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1138387258</subfield><subfield code="4">oth</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">978-1-491-92561-4</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032968472</subfield></datafield></record></collection> |
id | DE-604.BV047583125 |
illustrated | Illustrated |
indexdate | 2025-02-13T09:00:44Z |
institution | BVB |
isbn | 9781492082187 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032968472 |
oclc_num | 1337130472 |
open_access_boolean | |
owner | DE-29T DE-20 DE-1102 DE-573 |
owner_facet | DE-29T DE-20 DE-1102 DE-573 |
physical | xiii, 372 Seiten Illustrationen 232 mm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly |
record_format | marc |
spelling | Buduma, Nithin Verfasser aut Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio second edition Beijing O'Reilly May 2022 xiii, 372 Seiten Illustrationen 232 mm txt rdacontent n rdamedia nc rdacarrier bisacsh / COMPUTERS / Data Science / Machine Learning bisacsh / COMPUTERS / Artificial Intelligence / General bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence bisacsh / COMPUTERS / Machine Theory bisacsh / COMPUTERS / Data Science / Neural Networks Deep Learning (DE-588)1135597375 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Deep Learning (DE-588)1135597375 s DE-604 Buduma, Nikhil 1994- Verfasser (DE-588)1136495533 aut Papa, Joe Verfasser (DE-588)1250286557 aut Locascio, Nicholas Sonstige (DE-588)1138387258 oth Vorangegangen ist 978-1-491-92561-4 |
spellingShingle | Buduma, Nithin Buduma, Nikhil 1994- Papa, Joe Fundamentals of deep learning designing next-generation machine intelligence algorithms bisacsh / COMPUTERS / Data Science / Machine Learning bisacsh / COMPUTERS / Artificial Intelligence / General bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence bisacsh / COMPUTERS / Machine Theory bisacsh / COMPUTERS / Data Science / Neural Networks Deep Learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4193754-5 |
title | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_auth | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_exact_search | Fundamentals of deep learning designing next-generation machine intelligence algorithms |
title_full | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio |
title_fullStr | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio |
title_full_unstemmed | Fundamentals of deep learning designing next-generation machine intelligence algorithms Nithin Buduma, Nikhil Buduma, and Joe Papa with contributions by Nicholas Locascio |
title_short | Fundamentals of deep learning |
title_sort | fundamentals of deep learning designing next generation machine intelligence algorithms |
title_sub | designing next-generation machine intelligence algorithms |
topic | bisacsh / COMPUTERS / Data Science / Machine Learning bisacsh / COMPUTERS / Artificial Intelligence / General bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence bisacsh / COMPUTERS / Machine Theory bisacsh / COMPUTERS / Data Science / Neural Networks Deep Learning (DE-588)1135597375 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | bisacsh / COMPUTERS / Data Science / Machine Learning bisacsh / COMPUTERS / Artificial Intelligence / General bisacsh / COMPUTERS / Business & Productivity Software / Business Intelligence bisacsh / COMPUTERS / Machine Theory bisacsh / COMPUTERS / Data Science / Neural Networks Deep Learning Maschinelles Lernen |
work_keys_str_mv | AT budumanithin fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT budumanikhil fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT papajoe fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms AT locascionicholas fundamentalsofdeeplearningdesigningnextgenerationmachineintelligencealgorithms |