Deep learning on graphs:
Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established meth...
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
[2021]
|
Subjects: | |
Links: | https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 https://doi.org/10.1017/9781108924184 |
Summary: | Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines |
Physical Description: | 1 Online-Ressource (xviii, 320 Seiten) |
ISBN: | 9781108924184 |
DOI: | 10.1017/9781108924184 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047568468 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | cr|uuu---uuuuu | ||
008 | 211102s2021 xx o|||| 00||| eng d | ||
020 | |a 9781108924184 |c Online |9 978-1-108-92418-4 | ||
024 | 7 | |a 10.1017/9781108924184 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108924184 | ||
035 | |a (OCoLC)1284785113 | ||
035 | |a (DE-599)BVBBV047568468 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-739 |a DE-29 |a DE-92 |a DE-91 |a DE-19 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Ma, Yao |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1244840009 |4 aut | |
245 | 1 | 0 | |a Deep learning on graphs |c Yao Ma, Jiliang Tang |
264 | 1 | |a Cambridge |b Cambridge University Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xviii, 320 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Graph algorithms | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tang, Jiliang |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1142538648 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-83174-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108924184 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032954138 | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-91 |p ZDB-20-CBO |q TUM_Paketkauf_2021 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-19 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-29 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108924184 |l DE-739 |p ZDB-20-CBO |q UPA_PDA_CBO_Kauf2021 |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2702944 |
---|---|
_version_ | 1823989086884462592 |
adam_text | |
any_adam_object | |
author | Ma, Yao ca. 20./21. Jh Tang, Jiliang ca. 20./21. Jh |
author_GND | (DE-588)1244840009 (DE-588)1142538648 |
author_facet | Ma, Yao ca. 20./21. Jh Tang, Jiliang ca. 20./21. Jh |
author_role | aut aut |
author_sort | Ma, Yao ca. 20./21. Jh |
author_variant | y m ym j t jt |
building | Verbundindex |
bvnumber | BV047568468 |
classification_rvk | ST 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108924184 (OCoLC)1284785113 (DE-599)BVBBV047568468 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/9781108924184 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047568468</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211102s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108924184</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-92418-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108924184</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108924184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1284785113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047568468</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yao</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1244840009</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning on graphs</subfield><subfield code="c">Yao Ma, Jiliang Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 320 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jiliang</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1142538648</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-83174-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032954138</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108924184</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047568468 |
illustrated | Not Illustrated |
indexdate | 2025-02-13T09:00:44Z |
institution | BVB |
isbn | 9781108924184 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032954138 |
oclc_num | 1284785113 |
open_access_boolean | |
owner | DE-12 DE-739 DE-29 DE-92 DE-91 DE-BY-TUM DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-739 DE-29 DE-92 DE-91 DE-BY-TUM DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xviii, 320 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Paketkauf_2021 ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 ZDB-20-CBO UER_PDA_CBO_Kauf_2022 ZDB-20-CBO UPA_PDA_CBO_Kauf2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Ma, Yao ca. 20./21. Jh Tang, Jiliang ca. 20./21. Jh Deep learning on graphs Machine learning Graph algorithms Graphentheorie (DE-588)4113782-6 gnd Deep Learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)1135597375 |
title | Deep learning on graphs |
title_auth | Deep learning on graphs |
title_exact_search | Deep learning on graphs |
title_full | Deep learning on graphs Yao Ma, Jiliang Tang |
title_fullStr | Deep learning on graphs Yao Ma, Jiliang Tang |
title_full_unstemmed | Deep learning on graphs Yao Ma, Jiliang Tang |
title_short | Deep learning on graphs |
title_sort | deep learning on graphs |
topic | Machine learning Graph algorithms Graphentheorie (DE-588)4113782-6 gnd Deep Learning (DE-588)1135597375 gnd |
topic_facet | Machine learning Graph algorithms Graphentheorie Deep Learning |
url | https://doi.org/10.1017/9781108924184 |
work_keys_str_mv | AT mayao deeplearningongraphs AT tangjiliang deeplearningongraphs |