Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, NJ
John Wiley & Sons, Incorporated
2021
|
Links: | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119670087 https://ieeexplore.ieee.org/servlet/opac?bknumber=9292526 https://doi.org/10.1002/9781119670087 |
Item Description: | Description based on publisher supplied metadata and other sources |
Physical Description: | 1 Online-Ressource (xxxiii, 424 Seiten) |
ISBN: | 9781119670087 9781119670100 9781119670094 |
DOI: | 10.1002/9781119670087 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442484 | ||
003 | DE-604 | ||
005 | 20230126 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 xx o|||| 00||| eng d | ||
020 | |a 9781119670087 |c OBook |9 9781119670087 | ||
020 | |a 9781119670100 |9 9781119670100 | ||
020 | |a 9781119670094 |9 9781119670094 | ||
020 | |a 9781119670094 |9 978-1-119-67009-4 | ||
035 | |a (ZDB-30-PQE)EBC6420842 | ||
035 | |a (ZDB-30-PAD)EBC6420842 | ||
035 | |a (ZDB-89-EBL)EBL6420842 | ||
035 | |a (OCoLC)1226586133 | ||
035 | |a (DE-599)BVBBV047442484 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Aug4 |a DE-573 | ||
082 | 0 | |a 004.678 | |
100 | 1 | |a Gupta, Deepak |e Verfasser |0 (DE-588)1204268657 |4 aut | |
245 | 1 | 0 | |a Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |c edited by Deepak Gupta, Aditya Khamparia |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (xxxiii, 424 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use -- 1.1 Introduction -- 1.2 Why Fog, Edge, and Pervasive Computing? -- 1.3 Technologies Related to Fog and Edge Computing -- 1.4 Concept of Intelligent IoT Application in Smart (Fog) Computing Era -- 1.5 The Hierarchical Architecture of Fog/Edge Computing -- 1.6 Applications of Fog, Edge and Pervasive Computing in IoT‐based Healthcare -- 1.7 Issues, Challenges, and Opportunity -- 1.7.1 Security and Privacy Issues -- 1.7.2 Resource Management -- 1.7.3 Programming Platform -- 1.8 Conclusion -- Bibliography -- Chapter 2 Future Opportunistic Fog/Edge Computational Models and their Limitations -- 2.1 Introduction -- 2.2 What are the Benefits of Edge and Fog Computing for the Mechanical Web of Things (IoT)? -- 2.3 Disadvantages -- 2.4 Challenges -- 2.5 Role in Health Care -- 2.6 Blockchain and Fog, Edge Computing -- 2.7 How Blockchain will Illuminate Human Services Issues -- 2.8 Uses of Blockchain in the Future -- 2.9 Uses of Blockchain in Health Care -- 2.10 Edge Computing Segmental Analysis: -- 2.11 Uses of Fog Computing -- 2.12 Analytics in Fog Computing -- 2.13 Conclusion -- Bibliography -- Chapter 3 Automating Elicitation Technique Selection using Machine Learning -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Model: Requirement Elicitation Technique Selection Model -- 3.3.1 Determining Key Attributes -- 3.3.2 Selection Attributes -- 3.3.2.1 Analyst Experience -- 3.3.2.2 Number of Stakeholders -- 3.3.2.3 Technique Time -- 3.3.2.4 Level of Information -- 3.3.3 Selection Attributes Dataset -- 3.3.3.1 Mapping the Selection Attributes | |
505 | 8 | |a 3.3.4 k‐nearest Neighbor Algorithm Application -- 3.4 Analysis and Results -- 3.5 The Error Rate -- 3.6 Validation -- 3.6.1 Discussion of the Results of the Experiment -- 3.7 Conclusion -- Bibliography -- Chapter 4 Machine Learning Frameworks and Algorithms for Fog and Edge Computing -- 4.1 Introduction -- 4.1.1 Fog Computing and Edge Computing -- 4.1.2 Pervasive Computing -- 4.2 Overview of Machine Learning Frameworks for Fog and Edge Computing -- 4.2.1 TensorFlow -- 4.2.2 Keras -- 4.2.3 PyTorch -- 4.2.4 TensorFlow Lite -- 4.2.4.1 Use Pre‐train Models -- 4.2.4.2 Convert the Model -- 4.2.4.3 On‐device Inference -- 4.2.4.4 Model Optimization -- 4.2.5 Machine Learning and Deep Learning Techniques -- 4.2.5.1 Supervised, Unsupervised and Reinforcement Learning -- 4.2.5.2 Machine Learning, Deep Learning Techniques -- 4.2.5.3 Deep Learning Techniques -- 4.2.5.4 Efficient Deep Learning Algorithms for Inference -- 4.2.6 Pros and Cons of ML Algorithms for Fog and Edge Computing -- 4.2.6.1 Advantages using ML Algorithms -- 4.2.6.2 Disadvantages of using ML Algorithms -- 4.2.7 Hybrid ML Model for Smart IoT Applications -- 4.2.7.1 Multi‐Task Learning -- 4.2.7.2 Ensemble Learning -- 4.2.8 Possible Applications in Fog Era using Machine Learning -- 4.2.8.1 Computer Vision -- 4.2.8.2 ML‐ Assisted Healthcare Monitoring System -- 4.2.8.3 Smart Homes -- 4.2.8.4 Behavior Analyses -- 4.2.8.5 Monitoring in Remote Areas and Industries -- 4.2.8.6 Self‐Driving Cars -- Bibliography -- Chapter 5 Integrated Cloud Based Library Management in Intelligent IoT driven Applications -- 5.1 Introduction -- 5.1.1 Execution Plan for the Mobile Application -- 5.1.2 Main Contribution -- 5.2 Understanding Library Management -- 5.3 Integration of Mobile Platform with the Physical Library‐ Brief Concept -- 5.4 Database (Cloud Based) ‐ A Must have Component for Library Automation | |
505 | 8 | |a 5.5 IoT Driven Mobile Based Library Management ‐ General Concept -- 5.6 IoT Involved Real Time GUI (Cross Platform) Available to User -- 5.7 IoT Challenges -- 5.7.1 Infrastructure Challenges -- 5.7.2 Security Challenges -- 5.7.3 Societal Challenges -- 5.7.4 Commercial Challenges -- 5.8 Conclusion -- Bibliography -- Chapter 6 A Systematic and Structured Review of Intelligent Systems for Diagnosis of Renal Cancer -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Conclusion -- Bibliography -- Chapter 7 Location Driven Edge Assisted Device and Solutions for Intelligent Transportation -- 7.1 Introduction to Fog and Edge Computing -- 7.1.1 Need for Fog and Edge Computing -- 7.1.2 Fog Computing -- 7.1.2.1 Application Areas of Fog Computing -- 7.1.3 Edge Computing -- 7.1.3.1 Advantages of Edge Computing -- 7.1.3.2 Application Areas of Fog Computing -- 7.2 Introduction to Transportation System -- 7.3 Route Finding Process -- 7.3.1 Challenges Associated with Land Navigation and Routing Process -- 7.4 Edge Architecture for Route Finding -- 7.5 Technique Used -- 7.6 Algorithms Used for the Location Identification and Route Finding Process -- 7.6.1 Location Identification -- 7.6.2 Path Generation Technique -- 7.7 Results and Discussions -- 7.7.1 Output -- 7.7.2 Benefits of Edge‐based Routing -- 7.8 Conclusion -- Bibliography -- Chapter 8 Design and Simulation of MEMS for Automobile Condition Monitoring Using COMSOL Multiphysics Simulator -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Vehicle Condition Monitoring through Acoustic Emission -- 8.4 Piezo‐resistive Micro Electromechanical Sensors for Monitoring the Faults Through AE -- 8.5 Designing of MEM Sensor -- 8.6 Experimental Setup: -- 8.6.1 FFT Analysis of Automotive Diesel Engine Sound Recording using MATLAB -- 8.6.2 Design of MEMS Sensor using COMSOL Multiphysics | |
505 | 8 | |a 8.6.3 Electrostatic Study Steps for the Optimized Tri‐plate Comb Structure -- 8.7 Result and Discussions -- 8.8 Conclusion -- Bibliography -- Chapter 9 IoT Driven Healthcare Monitoring System -- 9.1 Introduction -- 9.1.1 Complementary Aspects of Cloud IoT in Healthcare Applications -- 9.1.2 Main Contribution -- 9.2 General Concept for IoT Based Healthcare System -- 9.3 View of the Overall IoT Healthcare System‐ Tiers Explained -- 9.4 A Brief Design of the IoT Healthcare Architecture‐individual Block Explanation -- 9.5 Models/Frameworks for IoT use in Healthcare -- 9.6 IoT e‐Health System Model -- 9.7 Process Flow for the Overall Model -- 9.8 Conclusion -- Bibliography -- Chapter 10 Fog Computing as Future Perspective in Vehicular Ad hoc Networks -- 10.1 Introduction -- 10.2 Future VANET: Primary Issues and Specifications -- 10.3 Fog Computing -- 10.3.1 Fog Computing Concept -- 10.3.2 Fog Technology Characterization -- 10.4 Related Works in Cloud and Fog Computing -- 10.5 Fog and Cloud Computing‐based Technology Applications in VANET -- 10.6 Challenges of Fog Computing in VANET -- 10.7 Issues of Fog Computing in VANET -- 10.8 Conclusion -- Bibliography -- Chapter 11 An Overview to Design an Efficient and Secure Fog‐assisted Data Collection Method in the Internet of Things -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Overview of the Chapter -- 11.4 Data Collection in the IoT -- 11.5 Fog Computing -- 11.5.1 Why fog Computing for Data Collection in IoT? -- 11.5.2 Architecture of Fog Computing -- 11.5.3 Features of Fog Computing -- 11.5.4 Threats of Fog Computing -- 11.5.5 Applications of Fog Computing with the IoT -- 11.6 Requirements for Designing a Data Collection Method -- 11.7 Conclusion -- Bibliography -- Chapter 12 Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities | |
505 | 8 | |a 12.1 Introduction to Fog Computing -- 12.1.1 Hierarchical Fog Computing Architecture -- 12.1.2 Layered Fog Computing Architecture -- 12.1.3 Comparison of Fog and Cloud Computing -- 12.2 Introduction to Internet of Things -- 12.2.1 Overview of Internet of Things -- 12.3 Conceptual Architecture of Internet of Things -- 12.4 Relationship between Internet of Things and Fog Computing -- 12.5 Use of Fog Analytics in Internet of Things -- 12.6 Conclusion -- Bibliography -- Chapter 13 A Medical Diagnosis of Urethral Stricture Using Intuitionistic Fuzzy Sets -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 Introduction -- 13.2.2 Fuzzy Sets -- 13.2.3 Intuitionistic Fuzzy Sets -- 13.2.4 Intuitionistic Fuzzy Relation -- 13.2.5 Max‐Min‐Max Composition -- 13.2.6 Linguistic Variable -- 13.2.7 Distance Measure In Intuitionistic Fuzzy Sets -- 13.2.7.1 The Hamming Distance: -- 13.2.7.2 Normalized Hamming Distance: -- 13.2.7.3 Compliment of an Intuitionistic Fuzzy Set Matrix -- 13.2.7.4 Revised Max‐Min Average Composition of A and B (A Φ B) -- 13.3 Max‐Min‐Max Algorithm for Disease Diagnosis -- 13.4 Case Study -- 13.5 Intuitionistic Fuzzy Max‐Min Average Algorithm for Disease Diagnosis -- 13.6 Result -- 13.7 Code for Calculation -- 13.8 Conclusion -- 13.9 Acknowledgement -- Bibliography -- Chapter 14 Security Attacks in Internet of Things -- 14.1 Introduction -- 14.2 Reference Model of Internet of Things (IoT) -- 14.3 IoT Communication Protocol -- 14.4 IoT Security -- 14.4.1 Physical Attack -- 14.4.2 Network Attack -- 14.4.3 Software Attack -- 14.4.4 Encryption Attack -- 14.5 Security Challenges in IoT -- 14.5.1 Cryptographic Strategies -- 14.5.2 Key Administration -- 14.5.3 Denial of Service -- 14.5.4 Authentication and Access Control -- 14.6 Conclusion -- Bibliography | |
505 | 8 | |a Chapter 15 Fog Integrated Novel Architecture for Telehealth Services with Swift Medical Delivery | |
700 | 1 | |a Khamparia, Aditya |d 1988- |e Sonstige |0 (DE-588)1186305169 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Gupta, Deepak |t Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |d Newark : John Wiley & Sons, Incorporated,c2021 |z 9781119670070 |
856 | 4 | 0 | |u https://doi.org/10.1002/9781119670087 |x Verlag |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-35-WEL | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844636 | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119670087 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9292526 |l DE-573 |p ZDB-35-WEL |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1822792240794173440 |
---|---|
adam_text | |
any_adam_object | |
author | Gupta, Deepak |
author_GND | (DE-588)1204268657 (DE-588)1186305169 |
author_facet | Gupta, Deepak |
author_role | aut |
author_sort | Gupta, Deepak |
author_variant | d g dg |
building | Verbundindex |
bvnumber | BV047442484 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use -- 1.1 Introduction -- 1.2 Why Fog, Edge, and Pervasive Computing? -- 1.3 Technologies Related to Fog and Edge Computing -- 1.4 Concept of Intelligent IoT Application in Smart (Fog) Computing Era -- 1.5 The Hierarchical Architecture of Fog/Edge Computing -- 1.6 Applications of Fog, Edge and Pervasive Computing in IoT‐based Healthcare -- 1.7 Issues, Challenges, and Opportunity -- 1.7.1 Security and Privacy Issues -- 1.7.2 Resource Management -- 1.7.3 Programming Platform -- 1.8 Conclusion -- Bibliography -- Chapter 2 Future Opportunistic Fog/Edge Computational Models and their Limitations -- 2.1 Introduction -- 2.2 What are the Benefits of Edge and Fog Computing for the Mechanical Web of Things (IoT)? -- 2.3 Disadvantages -- 2.4 Challenges -- 2.5 Role in Health Care -- 2.6 Blockchain and Fog, Edge Computing -- 2.7 How Blockchain will Illuminate Human Services Issues -- 2.8 Uses of Blockchain in the Future -- 2.9 Uses of Blockchain in Health Care -- 2.10 Edge Computing Segmental Analysis: -- 2.11 Uses of Fog Computing -- 2.12 Analytics in Fog Computing -- 2.13 Conclusion -- Bibliography -- Chapter 3 Automating Elicitation Technique Selection using Machine Learning -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Model: Requirement Elicitation Technique Selection Model -- 3.3.1 Determining Key Attributes -- 3.3.2 Selection Attributes -- 3.3.2.1 Analyst Experience -- 3.3.2.2 Number of Stakeholders -- 3.3.2.3 Technique Time -- 3.3.2.4 Level of Information -- 3.3.3 Selection Attributes Dataset -- 3.3.3.1 Mapping the Selection Attributes 3.3.4 k‐nearest Neighbor Algorithm Application -- 3.4 Analysis and Results -- 3.5 The Error Rate -- 3.6 Validation -- 3.6.1 Discussion of the Results of the Experiment -- 3.7 Conclusion -- Bibliography -- Chapter 4 Machine Learning Frameworks and Algorithms for Fog and Edge Computing -- 4.1 Introduction -- 4.1.1 Fog Computing and Edge Computing -- 4.1.2 Pervasive Computing -- 4.2 Overview of Machine Learning Frameworks for Fog and Edge Computing -- 4.2.1 TensorFlow -- 4.2.2 Keras -- 4.2.3 PyTorch -- 4.2.4 TensorFlow Lite -- 4.2.4.1 Use Pre‐train Models -- 4.2.4.2 Convert the Model -- 4.2.4.3 On‐device Inference -- 4.2.4.4 Model Optimization -- 4.2.5 Machine Learning and Deep Learning Techniques -- 4.2.5.1 Supervised, Unsupervised and Reinforcement Learning -- 4.2.5.2 Machine Learning, Deep Learning Techniques -- 4.2.5.3 Deep Learning Techniques -- 4.2.5.4 Efficient Deep Learning Algorithms for Inference -- 4.2.6 Pros and Cons of ML Algorithms for Fog and Edge Computing -- 4.2.6.1 Advantages using ML Algorithms -- 4.2.6.2 Disadvantages of using ML Algorithms -- 4.2.7 Hybrid ML Model for Smart IoT Applications -- 4.2.7.1 Multi‐Task Learning -- 4.2.7.2 Ensemble Learning -- 4.2.8 Possible Applications in Fog Era using Machine Learning -- 4.2.8.1 Computer Vision -- 4.2.8.2 ML‐ Assisted Healthcare Monitoring System -- 4.2.8.3 Smart Homes -- 4.2.8.4 Behavior Analyses -- 4.2.8.5 Monitoring in Remote Areas and Industries -- 4.2.8.6 Self‐Driving Cars -- Bibliography -- Chapter 5 Integrated Cloud Based Library Management in Intelligent IoT driven Applications -- 5.1 Introduction -- 5.1.1 Execution Plan for the Mobile Application -- 5.1.2 Main Contribution -- 5.2 Understanding Library Management -- 5.3 Integration of Mobile Platform with the Physical Library‐ Brief Concept -- 5.4 Database (Cloud Based) ‐ A Must have Component for Library Automation 5.5 IoT Driven Mobile Based Library Management ‐ General Concept -- 5.6 IoT Involved Real Time GUI (Cross Platform) Available to User -- 5.7 IoT Challenges -- 5.7.1 Infrastructure Challenges -- 5.7.2 Security Challenges -- 5.7.3 Societal Challenges -- 5.7.4 Commercial Challenges -- 5.8 Conclusion -- Bibliography -- Chapter 6 A Systematic and Structured Review of Intelligent Systems for Diagnosis of Renal Cancer -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Conclusion -- Bibliography -- Chapter 7 Location Driven Edge Assisted Device and Solutions for Intelligent Transportation -- 7.1 Introduction to Fog and Edge Computing -- 7.1.1 Need for Fog and Edge Computing -- 7.1.2 Fog Computing -- 7.1.2.1 Application Areas of Fog Computing -- 7.1.3 Edge Computing -- 7.1.3.1 Advantages of Edge Computing -- 7.1.3.2 Application Areas of Fog Computing -- 7.2 Introduction to Transportation System -- 7.3 Route Finding Process -- 7.3.1 Challenges Associated with Land Navigation and Routing Process -- 7.4 Edge Architecture for Route Finding -- 7.5 Technique Used -- 7.6 Algorithms Used for the Location Identification and Route Finding Process -- 7.6.1 Location Identification -- 7.6.2 Path Generation Technique -- 7.7 Results and Discussions -- 7.7.1 Output -- 7.7.2 Benefits of Edge‐based Routing -- 7.8 Conclusion -- Bibliography -- Chapter 8 Design and Simulation of MEMS for Automobile Condition Monitoring Using COMSOL Multiphysics Simulator -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Vehicle Condition Monitoring through Acoustic Emission -- 8.4 Piezo‐resistive Micro Electromechanical Sensors for Monitoring the Faults Through AE -- 8.5 Designing of MEM Sensor -- 8.6 Experimental Setup: -- 8.6.1 FFT Analysis of Automotive Diesel Engine Sound Recording using MATLAB -- 8.6.2 Design of MEMS Sensor using COMSOL Multiphysics 8.6.3 Electrostatic Study Steps for the Optimized Tri‐plate Comb Structure -- 8.7 Result and Discussions -- 8.8 Conclusion -- Bibliography -- Chapter 9 IoT Driven Healthcare Monitoring System -- 9.1 Introduction -- 9.1.1 Complementary Aspects of Cloud IoT in Healthcare Applications -- 9.1.2 Main Contribution -- 9.2 General Concept for IoT Based Healthcare System -- 9.3 View of the Overall IoT Healthcare System‐ Tiers Explained -- 9.4 A Brief Design of the IoT Healthcare Architecture‐individual Block Explanation -- 9.5 Models/Frameworks for IoT use in Healthcare -- 9.6 IoT e‐Health System Model -- 9.7 Process Flow for the Overall Model -- 9.8 Conclusion -- Bibliography -- Chapter 10 Fog Computing as Future Perspective in Vehicular Ad hoc Networks -- 10.1 Introduction -- 10.2 Future VANET: Primary Issues and Specifications -- 10.3 Fog Computing -- 10.3.1 Fog Computing Concept -- 10.3.2 Fog Technology Characterization -- 10.4 Related Works in Cloud and Fog Computing -- 10.5 Fog and Cloud Computing‐based Technology Applications in VANET -- 10.6 Challenges of Fog Computing in VANET -- 10.7 Issues of Fog Computing in VANET -- 10.8 Conclusion -- Bibliography -- Chapter 11 An Overview to Design an Efficient and Secure Fog‐assisted Data Collection Method in the Internet of Things -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Overview of the Chapter -- 11.4 Data Collection in the IoT -- 11.5 Fog Computing -- 11.5.1 Why fog Computing for Data Collection in IoT? -- 11.5.2 Architecture of Fog Computing -- 11.5.3 Features of Fog Computing -- 11.5.4 Threats of Fog Computing -- 11.5.5 Applications of Fog Computing with the IoT -- 11.6 Requirements for Designing a Data Collection Method -- 11.7 Conclusion -- Bibliography -- Chapter 12 Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities 12.1 Introduction to Fog Computing -- 12.1.1 Hierarchical Fog Computing Architecture -- 12.1.2 Layered Fog Computing Architecture -- 12.1.3 Comparison of Fog and Cloud Computing -- 12.2 Introduction to Internet of Things -- 12.2.1 Overview of Internet of Things -- 12.3 Conceptual Architecture of Internet of Things -- 12.4 Relationship between Internet of Things and Fog Computing -- 12.5 Use of Fog Analytics in Internet of Things -- 12.6 Conclusion -- Bibliography -- Chapter 13 A Medical Diagnosis of Urethral Stricture Using Intuitionistic Fuzzy Sets -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 Introduction -- 13.2.2 Fuzzy Sets -- 13.2.3 Intuitionistic Fuzzy Sets -- 13.2.4 Intuitionistic Fuzzy Relation -- 13.2.5 Max‐Min‐Max Composition -- 13.2.6 Linguistic Variable -- 13.2.7 Distance Measure In Intuitionistic Fuzzy Sets -- 13.2.7.1 The Hamming Distance: -- 13.2.7.2 Normalized Hamming Distance: -- 13.2.7.3 Compliment of an Intuitionistic Fuzzy Set Matrix -- 13.2.7.4 Revised Max‐Min Average Composition of A and B (A Φ B) -- 13.3 Max‐Min‐Max Algorithm for Disease Diagnosis -- 13.4 Case Study -- 13.5 Intuitionistic Fuzzy Max‐Min Average Algorithm for Disease Diagnosis -- 13.6 Result -- 13.7 Code for Calculation -- 13.8 Conclusion -- 13.9 Acknowledgement -- Bibliography -- Chapter 14 Security Attacks in Internet of Things -- 14.1 Introduction -- 14.2 Reference Model of Internet of Things (IoT) -- 14.3 IoT Communication Protocol -- 14.4 IoT Security -- 14.4.1 Physical Attack -- 14.4.2 Network Attack -- 14.4.3 Software Attack -- 14.4.4 Encryption Attack -- 14.5 Security Challenges in IoT -- 14.5.1 Cryptographic Strategies -- 14.5.2 Key Administration -- 14.5.3 Denial of Service -- 14.5.4 Authentication and Access Control -- 14.6 Conclusion -- Bibliography Chapter 15 Fog Integrated Novel Architecture for Telehealth Services with Swift Medical Delivery |
ctrlnum | (ZDB-30-PQE)EBC6420842 (ZDB-30-PAD)EBC6420842 (ZDB-89-EBL)EBL6420842 (OCoLC)1226586133 (DE-599)BVBBV047442484 |
dewey-full | 004.678 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.678 |
dewey-search | 004.678 |
dewey-sort | 14.678 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1002/9781119670087 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047442484</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230126</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119670087</subfield><subfield code="c">OBook</subfield><subfield code="9">9781119670087</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119670100</subfield><subfield code="9">9781119670100</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119670094</subfield><subfield code="9">9781119670094</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119670094</subfield><subfield code="9">978-1-119-67009-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6420842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6420842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6420842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226586133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.678</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gupta, Deepak</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1204268657</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications</subfield><subfield code="c">edited by Deepak Gupta, Aditya Khamparia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxiii, 424 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use -- 1.1 Introduction -- 1.2 Why Fog, Edge, and Pervasive Computing? -- 1.3 Technologies Related to Fog and Edge Computing -- 1.4 Concept of Intelligent IoT Application in Smart (Fog) Computing Era -- 1.5 The Hierarchical Architecture of Fog/Edge Computing -- 1.6 Applications of Fog, Edge and Pervasive Computing in IoT‐based Healthcare -- 1.7 Issues, Challenges, and Opportunity -- 1.7.1 Security and Privacy Issues -- 1.7.2 Resource Management -- 1.7.3 Programming Platform -- 1.8 Conclusion -- Bibliography -- Chapter 2 Future Opportunistic Fog/Edge Computational Models and their Limitations -- 2.1 Introduction -- 2.2 What are the Benefits of Edge and Fog Computing for the Mechanical Web of Things (IoT)? -- 2.3 Disadvantages -- 2.4 Challenges -- 2.5 Role in Health Care -- 2.6 Blockchain and Fog, Edge Computing -- 2.7 How Blockchain will Illuminate Human Services Issues -- 2.8 Uses of Blockchain in the Future -- 2.9 Uses of Blockchain in Health Care -- 2.10 Edge Computing Segmental Analysis: -- 2.11 Uses of Fog Computing -- 2.12 Analytics in Fog Computing -- 2.13 Conclusion -- Bibliography -- Chapter 3 Automating Elicitation Technique Selection using Machine Learning -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Model: Requirement Elicitation Technique Selection Model -- 3.3.1 Determining Key Attributes -- 3.3.2 Selection Attributes -- 3.3.2.1 Analyst Experience -- 3.3.2.2 Number of Stakeholders -- 3.3.2.3 Technique Time -- 3.3.2.4 Level of Information -- 3.3.3 Selection Attributes Dataset -- 3.3.3.1 Mapping the Selection Attributes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.4 k‐nearest Neighbor Algorithm Application -- 3.4 Analysis and Results -- 3.5 The Error Rate -- 3.6 Validation -- 3.6.1 Discussion of the Results of the Experiment -- 3.7 Conclusion -- Bibliography -- Chapter 4 Machine Learning Frameworks and Algorithms for Fog and Edge Computing -- 4.1 Introduction -- 4.1.1 Fog Computing and Edge Computing -- 4.1.2 Pervasive Computing -- 4.2 Overview of Machine Learning Frameworks for Fog and Edge Computing -- 4.2.1 TensorFlow -- 4.2.2 Keras -- 4.2.3 PyTorch -- 4.2.4 TensorFlow Lite -- 4.2.4.1 Use Pre‐train Models -- 4.2.4.2 Convert the Model -- 4.2.4.3 On‐device Inference -- 4.2.4.4 Model Optimization -- 4.2.5 Machine Learning and Deep Learning Techniques -- 4.2.5.1 Supervised, Unsupervised and Reinforcement Learning -- 4.2.5.2 Machine Learning, Deep Learning Techniques -- 4.2.5.3 Deep Learning Techniques -- 4.2.5.4 Efficient Deep Learning Algorithms for Inference -- 4.2.6 Pros and Cons of ML Algorithms for Fog and Edge Computing -- 4.2.6.1 Advantages using ML Algorithms -- 4.2.6.2 Disadvantages of using ML Algorithms -- 4.2.7 Hybrid ML Model for Smart IoT Applications -- 4.2.7.1 Multi‐Task Learning -- 4.2.7.2 Ensemble Learning -- 4.2.8 Possible Applications in Fog Era using Machine Learning -- 4.2.8.1 Computer Vision -- 4.2.8.2 ML‐ Assisted Healthcare Monitoring System -- 4.2.8.3 Smart Homes -- 4.2.8.4 Behavior Analyses -- 4.2.8.5 Monitoring in Remote Areas and Industries -- 4.2.8.6 Self‐Driving Cars -- Bibliography -- Chapter 5 Integrated Cloud Based Library Management in Intelligent IoT driven Applications -- 5.1 Introduction -- 5.1.1 Execution Plan for the Mobile Application -- 5.1.2 Main Contribution -- 5.2 Understanding Library Management -- 5.3 Integration of Mobile Platform with the Physical Library‐ Brief Concept -- 5.4 Database (Cloud Based) ‐ A Must have Component for Library Automation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5 IoT Driven Mobile Based Library Management ‐ General Concept -- 5.6 IoT Involved Real Time GUI (Cross Platform) Available to User -- 5.7 IoT Challenges -- 5.7.1 Infrastructure Challenges -- 5.7.2 Security Challenges -- 5.7.3 Societal Challenges -- 5.7.4 Commercial Challenges -- 5.8 Conclusion -- Bibliography -- Chapter 6 A Systematic and Structured Review of Intelligent Systems for Diagnosis of Renal Cancer -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Conclusion -- Bibliography -- Chapter 7 Location Driven Edge Assisted Device and Solutions for Intelligent Transportation -- 7.1 Introduction to Fog and Edge Computing -- 7.1.1 Need for Fog and Edge Computing -- 7.1.2 Fog Computing -- 7.1.2.1 Application Areas of Fog Computing -- 7.1.3 Edge Computing -- 7.1.3.1 Advantages of Edge Computing -- 7.1.3.2 Application Areas of Fog Computing -- 7.2 Introduction to Transportation System -- 7.3 Route Finding Process -- 7.3.1 Challenges Associated with Land Navigation and Routing Process -- 7.4 Edge Architecture for Route Finding -- 7.5 Technique Used -- 7.6 Algorithms Used for the Location Identification and Route Finding Process -- 7.6.1 Location Identification -- 7.6.2 Path Generation Technique -- 7.7 Results and Discussions -- 7.7.1 Output -- 7.7.2 Benefits of Edge‐based Routing -- 7.8 Conclusion -- Bibliography -- Chapter 8 Design and Simulation of MEMS for Automobile Condition Monitoring Using COMSOL Multiphysics Simulator -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Vehicle Condition Monitoring through Acoustic Emission -- 8.4 Piezo‐resistive Micro Electromechanical Sensors for Monitoring the Faults Through AE -- 8.5 Designing of MEM Sensor -- 8.6 Experimental Setup: -- 8.6.1 FFT Analysis of Automotive Diesel Engine Sound Recording using MATLAB -- 8.6.2 Design of MEMS Sensor using COMSOL Multiphysics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.6.3 Electrostatic Study Steps for the Optimized Tri‐plate Comb Structure -- 8.7 Result and Discussions -- 8.8 Conclusion -- Bibliography -- Chapter 9 IoT Driven Healthcare Monitoring System -- 9.1 Introduction -- 9.1.1 Complementary Aspects of Cloud IoT in Healthcare Applications -- 9.1.2 Main Contribution -- 9.2 General Concept for IoT Based Healthcare System -- 9.3 View of the Overall IoT Healthcare System‐ Tiers Explained -- 9.4 A Brief Design of the IoT Healthcare Architecture‐individual Block Explanation -- 9.5 Models/Frameworks for IoT use in Healthcare -- 9.6 IoT e‐Health System Model -- 9.7 Process Flow for the Overall Model -- 9.8 Conclusion -- Bibliography -- Chapter 10 Fog Computing as Future Perspective in Vehicular Ad hoc Networks -- 10.1 Introduction -- 10.2 Future VANET: Primary Issues and Specifications -- 10.3 Fog Computing -- 10.3.1 Fog Computing Concept -- 10.3.2 Fog Technology Characterization -- 10.4 Related Works in Cloud and Fog Computing -- 10.5 Fog and Cloud Computing‐based Technology Applications in VANET -- 10.6 Challenges of Fog Computing in VANET -- 10.7 Issues of Fog Computing in VANET -- 10.8 Conclusion -- Bibliography -- Chapter 11 An Overview to Design an Efficient and Secure Fog‐assisted Data Collection Method in the Internet of Things -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Overview of the Chapter -- 11.4 Data Collection in the IoT -- 11.5 Fog Computing -- 11.5.1 Why fog Computing for Data Collection in IoT? -- 11.5.2 Architecture of Fog Computing -- 11.5.3 Features of Fog Computing -- 11.5.4 Threats of Fog Computing -- 11.5.5 Applications of Fog Computing with the IoT -- 11.6 Requirements for Designing a Data Collection Method -- 11.7 Conclusion -- Bibliography -- Chapter 12 Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.1 Introduction to Fog Computing -- 12.1.1 Hierarchical Fog Computing Architecture -- 12.1.2 Layered Fog Computing Architecture -- 12.1.3 Comparison of Fog and Cloud Computing -- 12.2 Introduction to Internet of Things -- 12.2.1 Overview of Internet of Things -- 12.3 Conceptual Architecture of Internet of Things -- 12.4 Relationship between Internet of Things and Fog Computing -- 12.5 Use of Fog Analytics in Internet of Things -- 12.6 Conclusion -- Bibliography -- Chapter 13 A Medical Diagnosis of Urethral Stricture Using Intuitionistic Fuzzy Sets -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 Introduction -- 13.2.2 Fuzzy Sets -- 13.2.3 Intuitionistic Fuzzy Sets -- 13.2.4 Intuitionistic Fuzzy Relation -- 13.2.5 Max‐Min‐Max Composition -- 13.2.6 Linguistic Variable -- 13.2.7 Distance Measure In Intuitionistic Fuzzy Sets -- 13.2.7.1 The Hamming Distance: -- 13.2.7.2 Normalized Hamming Distance: -- 13.2.7.3 Compliment of an Intuitionistic Fuzzy Set Matrix -- 13.2.7.4 Revised Max‐Min Average Composition of A and B (A Φ B) -- 13.3 Max‐Min‐Max Algorithm for Disease Diagnosis -- 13.4 Case Study -- 13.5 Intuitionistic Fuzzy Max‐Min Average Algorithm for Disease Diagnosis -- 13.6 Result -- 13.7 Code for Calculation -- 13.8 Conclusion -- 13.9 Acknowledgement -- Bibliography -- Chapter 14 Security Attacks in Internet of Things -- 14.1 Introduction -- 14.2 Reference Model of Internet of Things (IoT) -- 14.3 IoT Communication Protocol -- 14.4 IoT Security -- 14.4.1 Physical Attack -- 14.4.2 Network Attack -- 14.4.3 Software Attack -- 14.4.4 Encryption Attack -- 14.5 Security Challenges in IoT -- 14.5.1 Cryptographic Strategies -- 14.5.2 Key Administration -- 14.5.3 Denial of Service -- 14.5.4 Authentication and Access Control -- 14.6 Conclusion -- Bibliography</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 15 Fog Integrated Novel Architecture for Telehealth Services with Swift Medical Delivery</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khamparia, Aditya</subfield><subfield code="d">1988-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1186305169</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Gupta, Deepak</subfield><subfield code="t">Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">9781119670070</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/9781119670087</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844636</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119670087</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9292526</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442484 |
illustrated | Not Illustrated |
indexdate | 2025-01-31T19:02:24Z |
institution | BVB |
isbn | 9781119670087 9781119670100 9781119670094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844636 |
oclc_num | 1226586133 |
open_access_boolean | |
owner | DE-Aug4 DE-573 |
owner_facet | DE-Aug4 DE-573 |
physical | 1 Online-Ressource (xxxiii, 424 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WEL ZDB-35-WIC FHA_PDA_WIC_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Gupta, Deepak Verfasser (DE-588)1204268657 aut Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications edited by Deepak Gupta, Aditya Khamparia Hoboken, NJ John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (xxxiii, 424 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use -- 1.1 Introduction -- 1.2 Why Fog, Edge, and Pervasive Computing? -- 1.3 Technologies Related to Fog and Edge Computing -- 1.4 Concept of Intelligent IoT Application in Smart (Fog) Computing Era -- 1.5 The Hierarchical Architecture of Fog/Edge Computing -- 1.6 Applications of Fog, Edge and Pervasive Computing in IoT‐based Healthcare -- 1.7 Issues, Challenges, and Opportunity -- 1.7.1 Security and Privacy Issues -- 1.7.2 Resource Management -- 1.7.3 Programming Platform -- 1.8 Conclusion -- Bibliography -- Chapter 2 Future Opportunistic Fog/Edge Computational Models and their Limitations -- 2.1 Introduction -- 2.2 What are the Benefits of Edge and Fog Computing for the Mechanical Web of Things (IoT)? -- 2.3 Disadvantages -- 2.4 Challenges -- 2.5 Role in Health Care -- 2.6 Blockchain and Fog, Edge Computing -- 2.7 How Blockchain will Illuminate Human Services Issues -- 2.8 Uses of Blockchain in the Future -- 2.9 Uses of Blockchain in Health Care -- 2.10 Edge Computing Segmental Analysis: -- 2.11 Uses of Fog Computing -- 2.12 Analytics in Fog Computing -- 2.13 Conclusion -- Bibliography -- Chapter 3 Automating Elicitation Technique Selection using Machine Learning -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Model: Requirement Elicitation Technique Selection Model -- 3.3.1 Determining Key Attributes -- 3.3.2 Selection Attributes -- 3.3.2.1 Analyst Experience -- 3.3.2.2 Number of Stakeholders -- 3.3.2.3 Technique Time -- 3.3.2.4 Level of Information -- 3.3.3 Selection Attributes Dataset -- 3.3.3.1 Mapping the Selection Attributes 3.3.4 k‐nearest Neighbor Algorithm Application -- 3.4 Analysis and Results -- 3.5 The Error Rate -- 3.6 Validation -- 3.6.1 Discussion of the Results of the Experiment -- 3.7 Conclusion -- Bibliography -- Chapter 4 Machine Learning Frameworks and Algorithms for Fog and Edge Computing -- 4.1 Introduction -- 4.1.1 Fog Computing and Edge Computing -- 4.1.2 Pervasive Computing -- 4.2 Overview of Machine Learning Frameworks for Fog and Edge Computing -- 4.2.1 TensorFlow -- 4.2.2 Keras -- 4.2.3 PyTorch -- 4.2.4 TensorFlow Lite -- 4.2.4.1 Use Pre‐train Models -- 4.2.4.2 Convert the Model -- 4.2.4.3 On‐device Inference -- 4.2.4.4 Model Optimization -- 4.2.5 Machine Learning and Deep Learning Techniques -- 4.2.5.1 Supervised, Unsupervised and Reinforcement Learning -- 4.2.5.2 Machine Learning, Deep Learning Techniques -- 4.2.5.3 Deep Learning Techniques -- 4.2.5.4 Efficient Deep Learning Algorithms for Inference -- 4.2.6 Pros and Cons of ML Algorithms for Fog and Edge Computing -- 4.2.6.1 Advantages using ML Algorithms -- 4.2.6.2 Disadvantages of using ML Algorithms -- 4.2.7 Hybrid ML Model for Smart IoT Applications -- 4.2.7.1 Multi‐Task Learning -- 4.2.7.2 Ensemble Learning -- 4.2.8 Possible Applications in Fog Era using Machine Learning -- 4.2.8.1 Computer Vision -- 4.2.8.2 ML‐ Assisted Healthcare Monitoring System -- 4.2.8.3 Smart Homes -- 4.2.8.4 Behavior Analyses -- 4.2.8.5 Monitoring in Remote Areas and Industries -- 4.2.8.6 Self‐Driving Cars -- Bibliography -- Chapter 5 Integrated Cloud Based Library Management in Intelligent IoT driven Applications -- 5.1 Introduction -- 5.1.1 Execution Plan for the Mobile Application -- 5.1.2 Main Contribution -- 5.2 Understanding Library Management -- 5.3 Integration of Mobile Platform with the Physical Library‐ Brief Concept -- 5.4 Database (Cloud Based) ‐ A Must have Component for Library Automation 5.5 IoT Driven Mobile Based Library Management ‐ General Concept -- 5.6 IoT Involved Real Time GUI (Cross Platform) Available to User -- 5.7 IoT Challenges -- 5.7.1 Infrastructure Challenges -- 5.7.2 Security Challenges -- 5.7.3 Societal Challenges -- 5.7.4 Commercial Challenges -- 5.8 Conclusion -- Bibliography -- Chapter 6 A Systematic and Structured Review of Intelligent Systems for Diagnosis of Renal Cancer -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Conclusion -- Bibliography -- Chapter 7 Location Driven Edge Assisted Device and Solutions for Intelligent Transportation -- 7.1 Introduction to Fog and Edge Computing -- 7.1.1 Need for Fog and Edge Computing -- 7.1.2 Fog Computing -- 7.1.2.1 Application Areas of Fog Computing -- 7.1.3 Edge Computing -- 7.1.3.1 Advantages of Edge Computing -- 7.1.3.2 Application Areas of Fog Computing -- 7.2 Introduction to Transportation System -- 7.3 Route Finding Process -- 7.3.1 Challenges Associated with Land Navigation and Routing Process -- 7.4 Edge Architecture for Route Finding -- 7.5 Technique Used -- 7.6 Algorithms Used for the Location Identification and Route Finding Process -- 7.6.1 Location Identification -- 7.6.2 Path Generation Technique -- 7.7 Results and Discussions -- 7.7.1 Output -- 7.7.2 Benefits of Edge‐based Routing -- 7.8 Conclusion -- Bibliography -- Chapter 8 Design and Simulation of MEMS for Automobile Condition Monitoring Using COMSOL Multiphysics Simulator -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Vehicle Condition Monitoring through Acoustic Emission -- 8.4 Piezo‐resistive Micro Electromechanical Sensors for Monitoring the Faults Through AE -- 8.5 Designing of MEM Sensor -- 8.6 Experimental Setup: -- 8.6.1 FFT Analysis of Automotive Diesel Engine Sound Recording using MATLAB -- 8.6.2 Design of MEMS Sensor using COMSOL Multiphysics 8.6.3 Electrostatic Study Steps for the Optimized Tri‐plate Comb Structure -- 8.7 Result and Discussions -- 8.8 Conclusion -- Bibliography -- Chapter 9 IoT Driven Healthcare Monitoring System -- 9.1 Introduction -- 9.1.1 Complementary Aspects of Cloud IoT in Healthcare Applications -- 9.1.2 Main Contribution -- 9.2 General Concept for IoT Based Healthcare System -- 9.3 View of the Overall IoT Healthcare System‐ Tiers Explained -- 9.4 A Brief Design of the IoT Healthcare Architecture‐individual Block Explanation -- 9.5 Models/Frameworks for IoT use in Healthcare -- 9.6 IoT e‐Health System Model -- 9.7 Process Flow for the Overall Model -- 9.8 Conclusion -- Bibliography -- Chapter 10 Fog Computing as Future Perspective in Vehicular Ad hoc Networks -- 10.1 Introduction -- 10.2 Future VANET: Primary Issues and Specifications -- 10.3 Fog Computing -- 10.3.1 Fog Computing Concept -- 10.3.2 Fog Technology Characterization -- 10.4 Related Works in Cloud and Fog Computing -- 10.5 Fog and Cloud Computing‐based Technology Applications in VANET -- 10.6 Challenges of Fog Computing in VANET -- 10.7 Issues of Fog Computing in VANET -- 10.8 Conclusion -- Bibliography -- Chapter 11 An Overview to Design an Efficient and Secure Fog‐assisted Data Collection Method in the Internet of Things -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Overview of the Chapter -- 11.4 Data Collection in the IoT -- 11.5 Fog Computing -- 11.5.1 Why fog Computing for Data Collection in IoT? -- 11.5.2 Architecture of Fog Computing -- 11.5.3 Features of Fog Computing -- 11.5.4 Threats of Fog Computing -- 11.5.5 Applications of Fog Computing with the IoT -- 11.6 Requirements for Designing a Data Collection Method -- 11.7 Conclusion -- Bibliography -- Chapter 12 Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities 12.1 Introduction to Fog Computing -- 12.1.1 Hierarchical Fog Computing Architecture -- 12.1.2 Layered Fog Computing Architecture -- 12.1.3 Comparison of Fog and Cloud Computing -- 12.2 Introduction to Internet of Things -- 12.2.1 Overview of Internet of Things -- 12.3 Conceptual Architecture of Internet of Things -- 12.4 Relationship between Internet of Things and Fog Computing -- 12.5 Use of Fog Analytics in Internet of Things -- 12.6 Conclusion -- Bibliography -- Chapter 13 A Medical Diagnosis of Urethral Stricture Using Intuitionistic Fuzzy Sets -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 Introduction -- 13.2.2 Fuzzy Sets -- 13.2.3 Intuitionistic Fuzzy Sets -- 13.2.4 Intuitionistic Fuzzy Relation -- 13.2.5 Max‐Min‐Max Composition -- 13.2.6 Linguistic Variable -- 13.2.7 Distance Measure In Intuitionistic Fuzzy Sets -- 13.2.7.1 The Hamming Distance: -- 13.2.7.2 Normalized Hamming Distance: -- 13.2.7.3 Compliment of an Intuitionistic Fuzzy Set Matrix -- 13.2.7.4 Revised Max‐Min Average Composition of A and B (A Φ B) -- 13.3 Max‐Min‐Max Algorithm for Disease Diagnosis -- 13.4 Case Study -- 13.5 Intuitionistic Fuzzy Max‐Min Average Algorithm for Disease Diagnosis -- 13.6 Result -- 13.7 Code for Calculation -- 13.8 Conclusion -- 13.9 Acknowledgement -- Bibliography -- Chapter 14 Security Attacks in Internet of Things -- 14.1 Introduction -- 14.2 Reference Model of Internet of Things (IoT) -- 14.3 IoT Communication Protocol -- 14.4 IoT Security -- 14.4.1 Physical Attack -- 14.4.2 Network Attack -- 14.4.3 Software Attack -- 14.4.4 Encryption Attack -- 14.5 Security Challenges in IoT -- 14.5.1 Cryptographic Strategies -- 14.5.2 Key Administration -- 14.5.3 Denial of Service -- 14.5.4 Authentication and Access Control -- 14.6 Conclusion -- Bibliography Chapter 15 Fog Integrated Novel Architecture for Telehealth Services with Swift Medical Delivery Khamparia, Aditya 1988- Sonstige (DE-588)1186305169 oth Erscheint auch als Druck-Ausgabe Gupta, Deepak Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications Newark : John Wiley & Sons, Incorporated,c2021 9781119670070 https://doi.org/10.1002/9781119670087 Verlag Volltext |
spellingShingle | Gupta, Deepak Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Fog, Edge and Pervasive Computing in Intelligent Internet of Things Driven Applications in Healthcare: Challenges, Limitations and Future Use -- 1.1 Introduction -- 1.2 Why Fog, Edge, and Pervasive Computing? -- 1.3 Technologies Related to Fog and Edge Computing -- 1.4 Concept of Intelligent IoT Application in Smart (Fog) Computing Era -- 1.5 The Hierarchical Architecture of Fog/Edge Computing -- 1.6 Applications of Fog, Edge and Pervasive Computing in IoT‐based Healthcare -- 1.7 Issues, Challenges, and Opportunity -- 1.7.1 Security and Privacy Issues -- 1.7.2 Resource Management -- 1.7.3 Programming Platform -- 1.8 Conclusion -- Bibliography -- Chapter 2 Future Opportunistic Fog/Edge Computational Models and their Limitations -- 2.1 Introduction -- 2.2 What are the Benefits of Edge and Fog Computing for the Mechanical Web of Things (IoT)? -- 2.3 Disadvantages -- 2.4 Challenges -- 2.5 Role in Health Care -- 2.6 Blockchain and Fog, Edge Computing -- 2.7 How Blockchain will Illuminate Human Services Issues -- 2.8 Uses of Blockchain in the Future -- 2.9 Uses of Blockchain in Health Care -- 2.10 Edge Computing Segmental Analysis: -- 2.11 Uses of Fog Computing -- 2.12 Analytics in Fog Computing -- 2.13 Conclusion -- Bibliography -- Chapter 3 Automating Elicitation Technique Selection using Machine Learning -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Model: Requirement Elicitation Technique Selection Model -- 3.3.1 Determining Key Attributes -- 3.3.2 Selection Attributes -- 3.3.2.1 Analyst Experience -- 3.3.2.2 Number of Stakeholders -- 3.3.2.3 Technique Time -- 3.3.2.4 Level of Information -- 3.3.3 Selection Attributes Dataset -- 3.3.3.1 Mapping the Selection Attributes 3.3.4 k‐nearest Neighbor Algorithm Application -- 3.4 Analysis and Results -- 3.5 The Error Rate -- 3.6 Validation -- 3.6.1 Discussion of the Results of the Experiment -- 3.7 Conclusion -- Bibliography -- Chapter 4 Machine Learning Frameworks and Algorithms for Fog and Edge Computing -- 4.1 Introduction -- 4.1.1 Fog Computing and Edge Computing -- 4.1.2 Pervasive Computing -- 4.2 Overview of Machine Learning Frameworks for Fog and Edge Computing -- 4.2.1 TensorFlow -- 4.2.2 Keras -- 4.2.3 PyTorch -- 4.2.4 TensorFlow Lite -- 4.2.4.1 Use Pre‐train Models -- 4.2.4.2 Convert the Model -- 4.2.4.3 On‐device Inference -- 4.2.4.4 Model Optimization -- 4.2.5 Machine Learning and Deep Learning Techniques -- 4.2.5.1 Supervised, Unsupervised and Reinforcement Learning -- 4.2.5.2 Machine Learning, Deep Learning Techniques -- 4.2.5.3 Deep Learning Techniques -- 4.2.5.4 Efficient Deep Learning Algorithms for Inference -- 4.2.6 Pros and Cons of ML Algorithms for Fog and Edge Computing -- 4.2.6.1 Advantages using ML Algorithms -- 4.2.6.2 Disadvantages of using ML Algorithms -- 4.2.7 Hybrid ML Model for Smart IoT Applications -- 4.2.7.1 Multi‐Task Learning -- 4.2.7.2 Ensemble Learning -- 4.2.8 Possible Applications in Fog Era using Machine Learning -- 4.2.8.1 Computer Vision -- 4.2.8.2 ML‐ Assisted Healthcare Monitoring System -- 4.2.8.3 Smart Homes -- 4.2.8.4 Behavior Analyses -- 4.2.8.5 Monitoring in Remote Areas and Industries -- 4.2.8.6 Self‐Driving Cars -- Bibliography -- Chapter 5 Integrated Cloud Based Library Management in Intelligent IoT driven Applications -- 5.1 Introduction -- 5.1.1 Execution Plan for the Mobile Application -- 5.1.2 Main Contribution -- 5.2 Understanding Library Management -- 5.3 Integration of Mobile Platform with the Physical Library‐ Brief Concept -- 5.4 Database (Cloud Based) ‐ A Must have Component for Library Automation 5.5 IoT Driven Mobile Based Library Management ‐ General Concept -- 5.6 IoT Involved Real Time GUI (Cross Platform) Available to User -- 5.7 IoT Challenges -- 5.7.1 Infrastructure Challenges -- 5.7.2 Security Challenges -- 5.7.3 Societal Challenges -- 5.7.4 Commercial Challenges -- 5.8 Conclusion -- Bibliography -- Chapter 6 A Systematic and Structured Review of Intelligent Systems for Diagnosis of Renal Cancer -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Conclusion -- Bibliography -- Chapter 7 Location Driven Edge Assisted Device and Solutions for Intelligent Transportation -- 7.1 Introduction to Fog and Edge Computing -- 7.1.1 Need for Fog and Edge Computing -- 7.1.2 Fog Computing -- 7.1.2.1 Application Areas of Fog Computing -- 7.1.3 Edge Computing -- 7.1.3.1 Advantages of Edge Computing -- 7.1.3.2 Application Areas of Fog Computing -- 7.2 Introduction to Transportation System -- 7.3 Route Finding Process -- 7.3.1 Challenges Associated with Land Navigation and Routing Process -- 7.4 Edge Architecture for Route Finding -- 7.5 Technique Used -- 7.6 Algorithms Used for the Location Identification and Route Finding Process -- 7.6.1 Location Identification -- 7.6.2 Path Generation Technique -- 7.7 Results and Discussions -- 7.7.1 Output -- 7.7.2 Benefits of Edge‐based Routing -- 7.8 Conclusion -- Bibliography -- Chapter 8 Design and Simulation of MEMS for Automobile Condition Monitoring Using COMSOL Multiphysics Simulator -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Vehicle Condition Monitoring through Acoustic Emission -- 8.4 Piezo‐resistive Micro Electromechanical Sensors for Monitoring the Faults Through AE -- 8.5 Designing of MEM Sensor -- 8.6 Experimental Setup: -- 8.6.1 FFT Analysis of Automotive Diesel Engine Sound Recording using MATLAB -- 8.6.2 Design of MEMS Sensor using COMSOL Multiphysics 8.6.3 Electrostatic Study Steps for the Optimized Tri‐plate Comb Structure -- 8.7 Result and Discussions -- 8.8 Conclusion -- Bibliography -- Chapter 9 IoT Driven Healthcare Monitoring System -- 9.1 Introduction -- 9.1.1 Complementary Aspects of Cloud IoT in Healthcare Applications -- 9.1.2 Main Contribution -- 9.2 General Concept for IoT Based Healthcare System -- 9.3 View of the Overall IoT Healthcare System‐ Tiers Explained -- 9.4 A Brief Design of the IoT Healthcare Architecture‐individual Block Explanation -- 9.5 Models/Frameworks for IoT use in Healthcare -- 9.6 IoT e‐Health System Model -- 9.7 Process Flow for the Overall Model -- 9.8 Conclusion -- Bibliography -- Chapter 10 Fog Computing as Future Perspective in Vehicular Ad hoc Networks -- 10.1 Introduction -- 10.2 Future VANET: Primary Issues and Specifications -- 10.3 Fog Computing -- 10.3.1 Fog Computing Concept -- 10.3.2 Fog Technology Characterization -- 10.4 Related Works in Cloud and Fog Computing -- 10.5 Fog and Cloud Computing‐based Technology Applications in VANET -- 10.6 Challenges of Fog Computing in VANET -- 10.7 Issues of Fog Computing in VANET -- 10.8 Conclusion -- Bibliography -- Chapter 11 An Overview to Design an Efficient and Secure Fog‐assisted Data Collection Method in the Internet of Things -- 11.1 Introduction -- 11.2 Related Works -- 11.3 Overview of the Chapter -- 11.4 Data Collection in the IoT -- 11.5 Fog Computing -- 11.5.1 Why fog Computing for Data Collection in IoT? -- 11.5.2 Architecture of Fog Computing -- 11.5.3 Features of Fog Computing -- 11.5.4 Threats of Fog Computing -- 11.5.5 Applications of Fog Computing with the IoT -- 11.6 Requirements for Designing a Data Collection Method -- 11.7 Conclusion -- Bibliography -- Chapter 12 Role of Fog Computing Platform in Analytics of Internet of Things‐ Issues, Challenges and Opportunities 12.1 Introduction to Fog Computing -- 12.1.1 Hierarchical Fog Computing Architecture -- 12.1.2 Layered Fog Computing Architecture -- 12.1.3 Comparison of Fog and Cloud Computing -- 12.2 Introduction to Internet of Things -- 12.2.1 Overview of Internet of Things -- 12.3 Conceptual Architecture of Internet of Things -- 12.4 Relationship between Internet of Things and Fog Computing -- 12.5 Use of Fog Analytics in Internet of Things -- 12.6 Conclusion -- Bibliography -- Chapter 13 A Medical Diagnosis of Urethral Stricture Using Intuitionistic Fuzzy Sets -- 13.1 Introduction -- 13.2 Preliminaries -- 13.2.1 Introduction -- 13.2.2 Fuzzy Sets -- 13.2.3 Intuitionistic Fuzzy Sets -- 13.2.4 Intuitionistic Fuzzy Relation -- 13.2.5 Max‐Min‐Max Composition -- 13.2.6 Linguistic Variable -- 13.2.7 Distance Measure In Intuitionistic Fuzzy Sets -- 13.2.7.1 The Hamming Distance: -- 13.2.7.2 Normalized Hamming Distance: -- 13.2.7.3 Compliment of an Intuitionistic Fuzzy Set Matrix -- 13.2.7.4 Revised Max‐Min Average Composition of A and B (A Φ B) -- 13.3 Max‐Min‐Max Algorithm for Disease Diagnosis -- 13.4 Case Study -- 13.5 Intuitionistic Fuzzy Max‐Min Average Algorithm for Disease Diagnosis -- 13.6 Result -- 13.7 Code for Calculation -- 13.8 Conclusion -- 13.9 Acknowledgement -- Bibliography -- Chapter 14 Security Attacks in Internet of Things -- 14.1 Introduction -- 14.2 Reference Model of Internet of Things (IoT) -- 14.3 IoT Communication Protocol -- 14.4 IoT Security -- 14.4.1 Physical Attack -- 14.4.2 Network Attack -- 14.4.3 Software Attack -- 14.4.4 Encryption Attack -- 14.5 Security Challenges in IoT -- 14.5.1 Cryptographic Strategies -- 14.5.2 Key Administration -- 14.5.3 Denial of Service -- 14.5.4 Authentication and Access Control -- 14.6 Conclusion -- Bibliography Chapter 15 Fog Integrated Novel Architecture for Telehealth Services with Swift Medical Delivery |
title | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |
title_auth | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |
title_exact_search | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |
title_full | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications edited by Deepak Gupta, Aditya Khamparia |
title_fullStr | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications edited by Deepak Gupta, Aditya Khamparia |
title_full_unstemmed | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications edited by Deepak Gupta, Aditya Khamparia |
title_short | Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications |
title_sort | fog edge and pervasive computing in intelligent iot driven applications |
url | https://doi.org/10.1002/9781119670087 |
work_keys_str_mv | AT guptadeepak fogedgeandpervasivecomputinginintelligentiotdrivenapplications AT khampariaaditya fogedgeandpervasivecomputinginintelligentiotdrivenapplications |