Self-service AI with power BI desktop: machine learning insights for business
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
[Berkeley, California?]
Apress
[2020]
|
Schlagwörter: | |
Abstract: | This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data ; Let Power BI explain why a certain data point differs from the rest ; Have Power BI show key influencers over categories of data ; Access artificial intelligence features available in the Azure cloud ; Walk the same drill down path in different parts of your hierarchy ; Load visualizations to add smartness to your reports ; Simulate changes in data and immediately see the consequences ; Know your dat a, even before you build your first report ; Create new columns by giving examples of the data that you need ; Transform and visualize your data with the help of R and Python scripts |
Umfang: | xxiii, 344 pages illustrations 26 cm |
ISBN: | 9781484262306 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047403382 | ||
003 | DE-604 | ||
005 | 20210913 | ||
007 | t| | ||
008 | 210805s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9781484262306 |9 978-1-4842-6230-6 | ||
035 | |a (OCoLC)1268198277 | ||
035 | |a (DE-599)BVBBV047403382 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1102 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Ehrenmueller-Jensen, Markus |e Verfasser |0 (DE-588)1219940879 |4 aut | |
245 | 1 | 0 | |a Self-service AI with power BI desktop |b machine learning insights for business |c Markus Ehrenmueller-Jensen |
246 | 1 | 3 | |a Self-service artificial intelligence with power business intelligence desktop |
264 | 1 | |a [Berkeley, California?] |b Apress |c [2020] | |
300 | |a xxiii, 344 pages |b illustrations |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a 1. Asking Questions in Natural Language -- 2. The Insights Feature -- 3. Discovering Key Influencers -- 4. Drill-Down and Decomposing Hierarchies -- 5. Adding Smart Visualizations -- 6. Experimenting with Scenarios -- 7. Characterizing a Dataset -- 8. Creating Columns from Example -- 9. Executing R and Python Visualizations -- 10. Transforming Data with R and Python -- 11. Execute Machine Learning Models in the Azure Cloud | |
520 | 3 | |a This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. | |
520 | 3 | |a You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. | |
520 | 3 | |a You will: Ask questions in natural language and get answers from your data ; Let Power BI explain why a certain data point differs from the rest ; Have Power BI show key influencers over categories of data ; Access artificial intelligence features available in the Azure cloud ; Walk the same drill down path in different parts of your hierarchy ; Load visualizations to add smartness to your reports ; Simulate changes in data and immediately see the consequences ; Know your dat a, even before you build your first report ; Create new columns by giving examples of the data that you need ; Transform and visualize your data with the help of R and Python scripts | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Power BI |0 (DE-588)1147621667 |2 gnd |9 rswk-swf |
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Artificial intelligence | |
653 | |a Microsoft .NET Framework | ||
653 | 0 | |a Machine learning | |
653 | 0 | |a Computer science | |
653 | |a Microsoft .NET Framework | ||
653 | 0 | |a Business / Data processing | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Computer science | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Microsoft software | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Power BI |0 (DE-588)1147621667 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4842-6231-3 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032804415 |
Datensatz im Suchindex
_version_ | 1818988185284247552 |
---|---|
any_adam_object | |
author | Ehrenmueller-Jensen, Markus |
author_GND | (DE-588)1219940879 |
author_facet | Ehrenmueller-Jensen, Markus |
author_role | aut |
author_sort | Ehrenmueller-Jensen, Markus |
author_variant | m e j mej |
building | Verbundindex |
bvnumber | BV047403382 |
classification_rvk | ST 530 |
contents | 1. Asking Questions in Natural Language -- 2. The Insights Feature -- 3. Discovering Key Influencers -- 4. Drill-Down and Decomposing Hierarchies -- 5. Adding Smart Visualizations -- 6. Experimenting with Scenarios -- 7. Characterizing a Dataset -- 8. Creating Columns from Example -- 9. Executing R and Python Visualizations -- 10. Transforming Data with R and Python -- 11. Execute Machine Learning Models in the Azure Cloud |
ctrlnum | (OCoLC)1268198277 (DE-599)BVBBV047403382 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04391nam a2200529 c 4500</leader><controlfield tag="001">BV047403382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210913 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210805s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484262306</subfield><subfield code="9">978-1-4842-6230-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268198277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047403382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehrenmueller-Jensen, Markus</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1219940879</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-service AI with power BI desktop</subfield><subfield code="b">machine learning insights for business</subfield><subfield code="c">Markus Ehrenmueller-Jensen</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Self-service artificial intelligence with power business intelligence desktop</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley, California?]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 344 pages</subfield><subfield code="b">illustrations</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Asking Questions in Natural Language -- 2. The Insights Feature -- 3. Discovering Key Influencers -- 4. Drill-Down and Decomposing Hierarchies -- 5. Adding Smart Visualizations -- 6. Experimenting with Scenarios -- 7. Characterizing a Dataset -- 8. Creating Columns from Example -- 9. Executing R and Python Visualizations -- 10. Transforming Data with R and Python -- 11. Execute Machine Learning Models in the Azure Cloud</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">You will: Ask questions in natural language and get answers from your data ; Let Power BI explain why a certain data point differs from the rest ; Have Power BI show key influencers over categories of data ; Access artificial intelligence features available in the Azure cloud ; Walk the same drill down path in different parts of your hierarchy ; Load visualizations to add smartness to your reports ; Simulate changes in data and immediately see the consequences ; Know your dat a, even before you build your first report ; Create new columns by giving examples of the data that you need ; Transform and visualize your data with the help of R and Python scripts</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Power BI</subfield><subfield code="0">(DE-588)1147621667</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microsoft software</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Power BI</subfield><subfield code="0">(DE-588)1147621667</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4842-6231-3</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032804415</subfield></datafield></record></collection> |
id | DE-604.BV047403382 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:18:34Z |
institution | BVB |
isbn | 9781484262306 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032804415 |
oclc_num | 1268198277 |
open_access_boolean | |
owner | DE-1102 |
owner_facet | DE-1102 |
physical | xxiii, 344 pages illustrations 26 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress |
record_format | marc |
spelling | Ehrenmueller-Jensen, Markus Verfasser (DE-588)1219940879 aut Self-service AI with power BI desktop machine learning insights for business Markus Ehrenmueller-Jensen Self-service artificial intelligence with power business intelligence desktop [Berkeley, California?] Apress [2020] xxiii, 344 pages illustrations 26 cm txt rdacontent n rdamedia nc rdacarrier 1. Asking Questions in Natural Language -- 2. The Insights Feature -- 3. Discovering Key Influencers -- 4. Drill-Down and Decomposing Hierarchies -- 5. Adding Smart Visualizations -- 6. Experimenting with Scenarios -- 7. Characterizing a Dataset -- 8. Creating Columns from Example -- 9. Executing R and Python Visualizations -- 10. Transforming Data with R and Python -- 11. Execute Machine Learning Models in the Azure Cloud This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data ; Let Power BI explain why a certain data point differs from the rest ; Have Power BI show key influencers over categories of data ; Access artificial intelligence features available in the Azure cloud ; Walk the same drill down path in different parts of your hierarchy ; Load visualizations to add smartness to your reports ; Simulate changes in data and immediately see the consequences ; Know your dat a, even before you build your first report ; Create new columns by giving examples of the data that you need ; Transform and visualize your data with the help of R and Python scripts Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Power BI (DE-588)1147621667 gnd rswk-swf Business / Data processing Artificial intelligence Microsoft .NET Framework Machine learning Computer science Microsoft software Maschinelles Lernen (DE-588)4193754-5 s Power BI (DE-588)1147621667 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4842-6231-3 |
spellingShingle | Ehrenmueller-Jensen, Markus Self-service AI with power BI desktop machine learning insights for business 1. Asking Questions in Natural Language -- 2. The Insights Feature -- 3. Discovering Key Influencers -- 4. Drill-Down and Decomposing Hierarchies -- 5. Adding Smart Visualizations -- 6. Experimenting with Scenarios -- 7. Characterizing a Dataset -- 8. Creating Columns from Example -- 9. Executing R and Python Visualizations -- 10. Transforming Data with R and Python -- 11. Execute Machine Learning Models in the Azure Cloud Maschinelles Lernen (DE-588)4193754-5 gnd Power BI (DE-588)1147621667 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1147621667 |
title | Self-service AI with power BI desktop machine learning insights for business |
title_alt | Self-service artificial intelligence with power business intelligence desktop |
title_auth | Self-service AI with power BI desktop machine learning insights for business |
title_exact_search | Self-service AI with power BI desktop machine learning insights for business |
title_full | Self-service AI with power BI desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_fullStr | Self-service AI with power BI desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_full_unstemmed | Self-service AI with power BI desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_short | Self-service AI with power BI desktop |
title_sort | self service ai with power bi desktop machine learning insights for business |
title_sub | machine learning insights for business |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Power BI (DE-588)1147621667 gnd |
topic_facet | Maschinelles Lernen Power BI |
work_keys_str_mv | AT ehrenmuellerjensenmarkus selfserviceaiwithpowerbidesktopmachinelearninginsightsforbusiness AT ehrenmuellerjensenmarkus selfserviceartificialintelligencewithpowerbusinessintelligencedesktop |