The essentials of machine learning in finance and accounting:
Gespeichert in:
Weitere beteiligte Personen: | , , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
London ; New York
Routledge
2021
|
Ausgabe: | First published |
Schriftenreihe: | Routledge advanced texts in economics and finance
36 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032778731&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Beschreibung: | Includes bibliographical references and index |
Umfang: | xxiv, 234 Seiten Illustrationen, Diagramme |
ISBN: | 9780367480813 9780367480837 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047377056 | ||
003 | DE-604 | ||
005 | 20211001 | ||
007 | t| | ||
008 | 210720s2021 xxka||| |||| 00||| eng d | ||
020 | |a 9780367480813 |c paperback |9 978-0-367-48081-3 | ||
020 | |a 9780367480837 |c hardback |9 978-0-367-48083-7 | ||
035 | |a (OCoLC)1231954182 | ||
035 | |a (DE-599)KXP174446247X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-355 | ||
050 | 0 | |a HG104 | |
082 | 0 | |a 332.0285/631 | |
084 | |a QK 305 |0 (DE-625)141642: |2 rvk | ||
245 | 1 | 0 | |a The essentials of machine learning in finance and accounting |c edited by Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, and Mohammed Mohi Uddin |
250 | |a First published | ||
264 | 1 | |a London ; New York |b Routledge |c 2021 | |
300 | |a xxiv, 234 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Routledge advanced texts in economics and finance |v 36 | |
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Finanzierung |0 (DE-588)4017182-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicherheit |0 (DE-588)4186957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Risikomanagement |0 (DE-588)4121590-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rechnungslegung |0 (DE-588)4128343-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Finance / Data processing | |
653 | 0 | |a Finance / Mathematical models | |
653 | 0 | |a Accounting / Data processing | |
653 | 0 | |a Machine leaarning | |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Finanzierung |0 (DE-588)4017182-6 |D s |
689 | 0 | 1 | |a Rechnungslegung |0 (DE-588)4128343-0 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 3 | |a Risikomanagement |0 (DE-588)4121590-4 |D s |
689 | 0 | 4 | |a Unsicherheit |0 (DE-588)4186957-6 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Abedin, Mohammad Zoynul |0 (DE-588)1219939609 |4 edt | |
700 | 1 | |a Hassan, M. Kabir |d 1963- |0 (DE-588)133341070 |4 edt | |
700 | 1 | |a Hájek, Petr |d 1940- |0 (DE-588)143699024 |4 edt | |
700 | 1 | |a Uddin, Mohammed Mohi |0 (DE-588)1196810168 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-003-03790-3 |
830 | 0 | |a Routledge advanced texts in economics and finance |v 36 |w (DE-604)BV037241432 |9 36 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032778731&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032778731 |
Datensatz im Suchindex
_version_ | 1819252808028782592 |
---|---|
adam_text | Contents List of figures ..........................................................................................................................................xiii List of tables............................................................................................................................................ xvii Notes on contributors ..........................................................................................................................six 1 Machine learning İn finance and accounting ........................................................................ 1 MOHAMMAD ZOYNUL ABEDIN, M. KABİR HASSAN, PETR HAJEK, AND MOHAMMED MOHI UDDIN 2 1.1 Introduction........................................................................................................................... 1.2 Motivation.............................................................................................................................. 1.3 Brief overview of chapters.................................................................................................... References.......................................................................................................................................... 1 2 3 4 Decision trees and random forests............................................................................................ 7 ROBERTO CASARIN, ALESSANDRO FACCHINETTI, DOMENICO SORICE, AND STEFANO TONELLATO 2.1 2.2 Introduction...........................................................................................................................
Classification trees................................................................................................................. 2.2.1 Impuri։} and binary splitting................................................................................ 2.2.1.1 Specification of the impurity function............................................... 2.2.1.2 Labeling the leaves................................................................................ 2.2.1.3 Tree size and stopping rules.................................................................. 2.2.2 Performance estimation.......................................................................................... 2.2.2.1 Resubscittmon estimate.......................................................................... 2.2.2.2 Test-sample estimate.............................................................................. 2.3 Regression trees....................................................................................................................... 2.3.1 Regression................................................................................................................. 2.3.2 Performance assessment and optimal size of the tree........................................ 2.3.2.1 Resubscicution estimace ofMSE(7՜).................................................... 2.3.2.2 Tesc-sample estimate of MSEfT՝)........................................................ 2.4 Issues common to classification and regression trees....................................................... 2.4.1 Surrogate
splits.......................................................................................................... 2.4.1.1 Handling of missing values.................................................................... 2.4.1.2 Ranking of input variables.................................................................. 2.4.1.3 Input combination.................................................................................. 7 8 9 10 H 12 12 13 13 14 H 15 15 15 16 16 17 18 18 vii
viii ■ Contents 2.4.2 Advantages and disadvantages of decision trees.................................................. Random forests........................................................................................................................ 2.5.1 Prediction error bias-variance decomposition.................................................... 2.5.2 Bias-variance decomposition for randomized trees ensembles....................... 2.5-3 From trees ensembles to random forests............................................................... 2.5-4 Partial dependence function................................................................................... 2.6 Forecasting bond returns using macroeconomic variables............................................. 2.7 Default prediction based on accountancy data.................................................................. 2.8 Appendix·. R. source codes for the applications in this chapter...................................... 2.8.1 Application to US BofA index................................................................................ 2.8.2 SME default risk application................................................................................. References........................................................................................................................................... 2.5 3 18 19 19 21 22 23 24 28 30 31 34 35 Improving longevity rtsk management through machine learning ................................ 37 SUSANNA LEVANTES!, ANDREA NIGRI, AND GABRIELLA PISCOPO 3-1 Յ.2 Յ.Յ 3.4
Introduction........................................................................................................................... The mortality models.............................................................................................................. Modeling mortality with machine learning...................................................................... Numerical application........................................................................................................... 3.4.1 Mortality models by comparison: an empirical analysis................................... 3.4.2 Longevity management for life insurance: sample cases................................... 3-5 Conclusions............................................................................................................................. Յ.6 Appendix................................................................................................................................. Note..................................................................................................................................................... References........................................................................................................................................... 37 39 41 43 43 46 48 49 55 55 4 Kernel switching ridge regression in business intelligence systems ................................ 57 MD. ASHAD ALAM, OSAMU KOMORI, AND MD. FERDUSH RAHMAN 4.1 4.2 4.3 4.4
Introduction............................................................................................................................ Method...................................................................................................................................... 4.2.1 Switching regression................................................................................................. 4.2.2 Switching ridge regression....................................................................................... 4.2.Յ Dual form of the ridge regression.......................................................................... 4.2.4 Basic notion of kernel methods............................................................................. 4.2.5 Alternative derivation to use ridge regression in the feature space.................................................................................................. 4.2.6 Kernel ridge regression............................................................................................ 4.2.7 Kernel ridge regression: duality............................................................................. 4.2.8 Kernel switching tidge regression.......................................................................... Experimental results............................................................................................................... 4.З.І Simulation.................................................................................................................. 4.3-2 Application in business
intelligence..................................................................... Discussion................................................................................................................................ 57 59 59 60 60 6! 61 62 63 65 66 66 67 70
Contente U ¡x 4.5 Conclusion and future research.......................................................................................... 70 4.6 Appendix: Kernel switching ridge regression: an R code............................................... 71 References......................................................................................................................................... 72 5 Predicting stock return volatility using sentiment analysis of corporate annual reports................................................................................................................................ 75 PETR HAJEK, RENATA MYSKOVA, AND VLADIMIR OLEJ 5.1 5.2 5-3 Introduction........................................................................................................................... Related literature.................................................................................................................... Research methodology......................................................................................................... 5.3.1 Financial data and indicators................................................................................ 5.3.2 Textual data and linguistic indicators.................................................................. 5.3.3 Machine learning methods.................................................................................... 5-4 Experimental results.............................................................................................................. 5.5
Conclusions............................................................................................................................ Acknowledgments............................................................................................................................ References......................................................................................................................................... 6 75 76 78 79 80 81 86 93 93 93 Random projection methods in economics and finance ................................................... 97 ROBERTO CASARINAND VERONICA VEGGENTE 6.1 6.2 Introduction........................................................................................................................... 97 Dimensionality reduction..................................................................................................... 100 6.2.1 Principal component analysis (PCA).................................................................... 101 6.2.2 Factor analysis...........................................................................................................102 6.2.3 Projection pursuit..................................................................................................... 103 6.3 Random projection.................................................................................................................103 6.3.1 Johnson-Lindenstrauss lemma................................................................................104 6.3.2 Projection matrices’
specification..........................................................................105 6.4 Applications of random projection......................................................................................106 6.4.1 A compressed linear regression model..................................................................106 6.4.2 Tracking the S P500 index...................................................................................108 6.4.3 Forecasting S P500 returns................................................................................. Ill 6.4.4 Forecasting energy trading volumes...................................................................... 114 6.5 Appendix: Matlab code..........................................................................................................118 Notes................................................................................................................................................... 120 References.......................................................................................................................................... 120 7 The future of cloud computing in financial services: a machine learning and artificial intelligence perspective ..................................................123 RICHARD L. HARMON AND ANDREW PSALTIS 7.1 7.2 7.3 Introduction............................................................................................................................ 123 The role of machine learning and artificial intelligence in financial services.............124 The enterprise data
cloud.......................................................................................................126
■ 7.4 7.5 Contents Data concextuality: machine learning-based enriry analytics across rhe enterprise... 127 Identifying Central Counterparty (CCP) risk using ABM simulations......................131 7.6 Systemic risk and cloud concentration risk exposures.................................................... 134 7.7 How should regulators address these challenges?.............................................................137 Notes.................................................................................................................................................... 137 References............................................................................................................................................138 Prospects and challenges of using artificial intelligence in the audit process...............139 EMON KALYAN CHOWDHURY 8.1 Introduction............................................................................................................................139 8.1.1 Background and relevant aspect of auditing........................................................ 140 Literature review...................................................................................................................... 141 Artificial intelligence in auditing...........................................................................................142 8.3.1 Artificial intelligence.................................................................................................142 8.3.2 Use of expert systems in
auditing........................................................................... 143 8.3.3 Use of neural network in auditing..........................................................................143 8.4 Framework for including AI in auditing.............................................................................143 8.4.1 Components............................................................................................................... 144 8.4.1.1 .31 strategy..................................................................................................144 8.4.1.2 Governance................................................................................................ 144 8.4.1.3 Human factor............................................................................................144 8.4.2 Elements...................................................................................................................... 145 8.4.2.1 Cyber resilience......................................................................................... 145 8.4.2.2 AI competencies........................................................................................145 8.4.2.3 Data quality............................................................................................... 145 8.4.2.4 Data architecture and infrastructure......................................................145 8.4.2.5 Measuring performance........................................................................... 145 8.4.2.6
Ethics.......................................................................................................... 145 8.4.2.7 Black box..................................................................................................... 146 8.5 Transformation of the audit process..................................................................................... 146 8.5.1 Impact of digitalization on audit quality ..............................................................147 8.5-2 Impact of digitalization on audit firms...................................................................147 8.5.3 Steps to transform manual audit operations to Al-based...................................148 8.6 Applications of artificial intelligence in auditing — few examples...................................149 8.6.1 KPMG.........................................................................................................................149 8.6.2 Deloitte....................................................................................................................... 149 8.6.3 PwC......................................................................... ..149 8.6.4 Ernst and Young (EY)...............................................................................................150 8.6.5 K.Coe Isom................................................................................................................ 150 8.6.6 Doeren Mayhew.........................................................................................................150 8.6.7
CohnReznick............................................................................................................. 150 8.6.8 The Association of Certified Fraud Examiners (ACFE).................................... 150 8.7 Prospects of an Al-based audit process in Bangladesh..................................................... 150 8.7.1 General aspects............................................................................................................ 151 8.2 8.3
Contents U 8.7.2 Audit հրա specific aspects.......................................................................................15) 8.7.3 Business organization aspects................................................................................. 152 8.8 Conclusion..............................................................................................................................152 Bibliography....................................................................................................................................... 153 9 Web usage analysis: pillar 3 informationassessment in turbulent times ........................ 157 ANNA PILKOVÁ, MICHAL MUNK, PETRA BLAZEKOVA AND LUBOMIR BENKO 9.1 Introduction............................................................................................................................ 157 9-2 Related work...........................................................................................................................158 9.Յ Research methodology..........................................................................................................161 9.4 Results...................................................................................................................................... 164 9-5 Discussion and conclusion...................................................................................................172 Acknowledgements...........................................................................................................................175 Disclosure
statement............................................................... 175 References.......................................................................................................................................... 175 10 Machine (earning in the helds ofaccounting, economics and finance: the emergence of new strategies .................................................................................................181 MAHA RADWAN, SAIMA DRISSI AND SILVANA SECİNARO 10.1 Introduction............................................................................................................................ 181 10.2 General overview on machine learning.............................................................................. 182 10.3 Data analysis process and main algorithms used...............................................................183 10.3.1 Supervised models................................................................................................... 184 10.3.2 Unsupervised models................................................................................................186 10.3.3 Semi-supervised models..........................................................................................187 10.3.4 Reinforcement learning models.............................................................................188 10.4 Machine learning uses: cases in the fields of economics, finance and accounting.... 189 10.4.1 Algorithmic trading.................................................................................................. 189 10.4.2 Insurance
pricing..................... 190 10.4.3 Credit risk assessment..............................................................................................191 10.4.4 Financial fraud detection........................................................................................ 192 10.5 Conclusions..............................................................................................................................194 References.......................................................................................................................................... 194 11 Handling class imbalance data inbusiness domain .............................................................. 199 MD. SHAJALAL, MOHAMMAD ZOYNUL ABEDIN AND MOHAMMED MOHI UDDIN 11.1 Introduction............................................................................................................................199 11.2 Data imbalance problem.......................................................................................................200 11.3 Balancing techniques..............................................................................................................201 11.3.1 Random sampling-based mechod..........................................................................201 11.3.2 SMOTE oversampling.............................................................................................201 11.3.3 Borderiine-SMOTE.................................................................................................202 11.3.4 Class weight
boosting.............................................................................................. 203 11.4 Evaluation metrics.................................................................................................................. 203
xii ■ Contents 11.5 Case study: credit card fraud detection................................................................................206 11.6 Conclusion.................................................................................................................................208 References...........................................................................................................................................208 12 Artificial intelligence (AI) in recruiting talents: recruiters’ intention and actual use of AI ............................................................................................................................... 211 MD. AFTAB UDDIN, MOHAMMAD SAKWARALAM, MD. KAOSAR HOSSAIN, TÁJUKUL ISLAM, AND MD. SHAH AZIZUL HOQUE 12.1 Introduction............................................................................................................................ 211 12.2 Theory and hypothesis development....................................................................................2)3 12.2.1 Technology anxiety and intentions to use.............................................................214 12.2.2 Performance expectancy and intentions to use.................................................... 214 12.2.3 Effort expectancy and intentions to use................................................................214 12.2.4 Social influence and intention to use......................................................................215 12.2.5 Resistance to change and intentions to
use.......................................................... 215 12.2.6 Facilitating conditions and intentions to use....................................................... 215 12.2.7 Behavioral intention to use and actual use........................................................... 216 12.2.8 Moderating effects of age status.............................................................................. 216 12.3 Research design......................................................................................................................... 218 12.3.1 Survey design..............................................................................................................218 12.3.2 Data collection procedure and participants1 information..................................218 12.3.3 Measurement tools..................................................................................................... 218 12.3.4 Results and hypotheses testing................................................................................219 12.3.4.1 Analytical technique................................................................................219 12.3.4.2 Measurement model evaluation........................................................... 219 12.3.4.3 Structural model evaluation...................................................................221 12.3.4.4 Testing of direct effects........................................................................... 222 12-3-4,5 Testing of moderating effects...............................................................222 12.4 Discussion
and conclusion....................................................................................................223 12.4.1 Limitation of study and future research directions............................................225 References.......................................................................................................................................... 226 iudex ........................................................................................................................................................ 233
|
any_adam_object | 1 |
author2 | Abedin, Mohammad Zoynul Hassan, M. Kabir 1963- Hájek, Petr 1940- Uddin, Mohammed Mohi |
author2_role | edt edt edt edt |
author2_variant | m z a mz mza m k h mk mkh p h ph m m u mm mmu |
author_GND | (DE-588)1219939609 (DE-588)133341070 (DE-588)143699024 (DE-588)1196810168 |
author_facet | Abedin, Mohammad Zoynul Hassan, M. Kabir 1963- Hájek, Petr 1940- Uddin, Mohammed Mohi |
building | Verbundindex |
bvnumber | BV047377056 |
callnumber-first | H - Social Science |
callnumber-label | HG104 |
callnumber-raw | HG104 |
callnumber-search | HG104 |
callnumber-sort | HG 3104 |
callnumber-subject | HG - Finance |
classification_rvk | QK 305 |
ctrlnum | (OCoLC)1231954182 (DE-599)KXP174446247X |
dewey-full | 332.0285/631 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.0285/631 |
dewey-search | 332.0285/631 |
dewey-sort | 3332.0285 3631 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
edition | First published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02699nam a2200613 cb4500</leader><controlfield tag="001">BV047377056</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211001 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210720s2021 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367480813</subfield><subfield code="c">paperback</subfield><subfield code="9">978-0-367-48081-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367480837</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-367-48083-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1231954182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP174446247X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG104</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.0285/631</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 305</subfield><subfield code="0">(DE-625)141642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The essentials of machine learning in finance and accounting</subfield><subfield code="c">edited by Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, and Mohammed Mohi Uddin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London ; New York</subfield><subfield code="b">Routledge</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 234 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Routledge advanced texts in economics and finance</subfield><subfield code="v">36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzierung</subfield><subfield code="0">(DE-588)4017182-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Risikomanagement</subfield><subfield code="0">(DE-588)4121590-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rechnungslegung</subfield><subfield code="0">(DE-588)4128343-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finance / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finance / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Accounting / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine leaarning</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finanzierung</subfield><subfield code="0">(DE-588)4017182-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rechnungslegung</subfield><subfield code="0">(DE-588)4128343-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Risikomanagement</subfield><subfield code="0">(DE-588)4121590-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abedin, Mohammad Zoynul</subfield><subfield code="0">(DE-588)1219939609</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hassan, M. Kabir</subfield><subfield code="d">1963-</subfield><subfield code="0">(DE-588)133341070</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hájek, Petr</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)143699024</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uddin, Mohammed Mohi</subfield><subfield code="0">(DE-588)1196810168</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-03790-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Routledge advanced texts in economics and finance</subfield><subfield code="v">36</subfield><subfield code="w">(DE-604)BV037241432</subfield><subfield code="9">36</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032778731&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032778731</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV047377056 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:17:46Z |
institution | BVB |
isbn | 9780367480813 9780367480837 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032778731 |
oclc_num | 1231954182 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | xxiv, 234 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Routledge |
record_format | marc |
series | Routledge advanced texts in economics and finance |
series2 | Routledge advanced texts in economics and finance |
spellingShingle | The essentials of machine learning in finance and accounting Routledge advanced texts in economics and finance Finanzierung (DE-588)4017182-6 gnd Unsicherheit (DE-588)4186957-6 gnd Risikomanagement (DE-588)4121590-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Rechnungslegung (DE-588)4128343-0 gnd |
subject_GND | (DE-588)4017182-6 (DE-588)4186957-6 (DE-588)4121590-4 (DE-588)4193754-5 (DE-588)4128343-0 (DE-588)4143413-4 |
title | The essentials of machine learning in finance and accounting |
title_auth | The essentials of machine learning in finance and accounting |
title_exact_search | The essentials of machine learning in finance and accounting |
title_full | The essentials of machine learning in finance and accounting edited by Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, and Mohammed Mohi Uddin |
title_fullStr | The essentials of machine learning in finance and accounting edited by Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, and Mohammed Mohi Uddin |
title_full_unstemmed | The essentials of machine learning in finance and accounting edited by Mohammad Zoynul Abedin, M. Kabir Hassan, Petr Hajek, and Mohammed Mohi Uddin |
title_short | The essentials of machine learning in finance and accounting |
title_sort | the essentials of machine learning in finance and accounting |
topic | Finanzierung (DE-588)4017182-6 gnd Unsicherheit (DE-588)4186957-6 gnd Risikomanagement (DE-588)4121590-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Rechnungslegung (DE-588)4128343-0 gnd |
topic_facet | Finanzierung Unsicherheit Risikomanagement Maschinelles Lernen Rechnungslegung Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032778731&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV037241432 |
work_keys_str_mv | AT abedinmohammadzoynul theessentialsofmachinelearninginfinanceandaccounting AT hassanmkabir theessentialsofmachinelearninginfinanceandaccounting AT hajekpetr theessentialsofmachinelearninginfinanceandaccounting AT uddinmohammedmohi theessentialsofmachinelearninginfinanceandaccounting |