Spectral theory: basic concepts and applications
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cham, Switzerland
Springer Nature Switzerland AG
[2020]
|
Schriftenreihe: | Graduate texts in mathematics
284 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032709317&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | x, 338 Seiten Illustrationen |
ISBN: | 9783030380014 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047306263 | ||
003 | DE-604 | ||
005 | 20220721 | ||
007 | t| | ||
008 | 210601s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9783030380014 |c Hardcover |9 978-3-030-38001-4 | ||
035 | |a (OCoLC)1151827906 | ||
035 | |a (DE-599)BVBBV047306263 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-19 |a DE-739 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Borthwick, David |e Verfasser |0 (DE-588)1112155821 |4 aut | |
245 | 1 | 0 | |a Spectral theory |b basic concepts and applications |c David Borthwick |
264 | 1 | |a Cham, Switzerland |b Springer Nature Switzerland AG |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a x, 338 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 284 | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Functional analysis | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unbeschränkter Operator |0 (DE-588)4236037-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 1 | |a Unbeschränkter Operator |0 (DE-588)4236037-7 |D s |
689 | 0 | 2 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | 3 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-38002-1 |
830 | 0 | |a Graduate texts in mathematics |v 284 |w (DE-604)BV000000067 |9 284 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032709317&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032709317 |
Datensatz im Suchindex
_version_ | 1819281532778446848 |
---|---|
adam_text | Contents 1 Introduction......................................................................................................... 1 2 Hilbert Spaces..................................................................................................... 5 5 7 9 15 18 24 27 31 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Normed Vector Spaces........................................................................... Lp Spaces................................................................................................ Bounded Linear Maps............................................................................ Hilbert Spaces......................................................................................... Sobolev Spaces....................................................................................... Orthogonality.......................................................................................... Orthonormal Bases................................................................................. Exercises.................................................................................................. 3 Operators............................................................................................................. 3.1 3.2 3.3 3.4 3.5 3.6 Unbounded Operators............................................................................ Adjoints................................................................................................... Closed Operators.................................................................................... Symmetry and Self-
adjointness............................................................. Compact Operators................................................................................. Exercises.................................................................................................. 4 Spectrum and Resolvent .................................................................................. 4.1 4.2 4.3 4.4 4.5 5 Definitions and Examples...................................................................... Resolvent ................................................................................................ Spectrum of Self-adjoint Operators....................................................... Spectral Theory of Compact Operators ............................................... Exercises.................................................................................................. 35 35 37 41 47 57 62 67 67 79 86 89 96 101 Unitary Operators ................................................................................... 102 The Main Theorem................................................................................. 107 Functional Calculus............................................................................... 112 Spectral Decomposition......................................................................... 115 Exercises.................................................................................................. 121 The Spectral Theorem....................................................................................... 5.1 5.2 5.3 5.4 5.5 ix
Contents x 6 The Laplacian with Boundary Conditions.................................................. 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 125 Self-adjoint Extensions........................................................................... 129 Discreteness of Spectrum...................................................................... 135 Regularity of Eigenfunctions................................................................ 143 Eigenvalue Computations...................................................................... 147 Asymptotics of Dirichlet Eigenvalues.................................................. 155 Nodal Domains....................................................................................... 171 Isoperimetric Inequalities and Minimal Eigenvalues.......................... 174 Exercises.................................................................................................. 179 7 Schrôdinger Operators..................................................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Positive Potentials.................................................................................. Relatively Bounded Perturbations......................................................... Relatively Compact Perturbations......................................................... Hydrogen Atom ..................................................................................... Semiclassical Asymptotics..................................................................... Periodic
Potentials.................................................................................. Exercises.................................................................................................. 183 184 194 197 203 207 214 220 8 Operators on Graphs......................................................................................... 225 Combinatorial Laplacians...................................................................... Quantum Graphs...................................................................................... Spectral Properties of Compact Quantum Graphs............................... Eigenvalue Comparison......................................................................... Eigenvalue Asymptotics......................................................................... Exercises.................................................................................................. 226 230 232 234 237 242 9 Spectral Theory on Manifolds......................................................................... 245 245 250 262 266 270 282 287 291 298 8.1 8.2 8.3 8.4 8.5 8.6 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Smooth Manifolds................................................................................... Riemannian Metrics............................................................................... The Laplacian.......................................................................................... Spectrum of a Compact Manifold......................................................... Heat
Equation.......................................................................................... Wave Propagation on Compact Manifolds........................................... Complete Manifolds and Essential Self-adjointness........................... Essential Spectrum of Complete Manifolds......................................... Exercises.................................................................................................. 303 Measure and Integration ........................................................................ 303 Lp Spaces................................................................................................ 315 Fourier Transform.................................................................................. 320 Elliptic Regularity.................................................................................. 324 A Background Material........................................................................................ A. 1 A.2 A.3 A.4 References................................................................................................................... 331 Index............................................................................................................................. 335
|
any_adam_object | 1 |
author | Borthwick, David |
author_GND | (DE-588)1112155821 |
author_facet | Borthwick, David |
author_role | aut |
author_sort | Borthwick, David |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV047306263 |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)1151827906 (DE-599)BVBBV047306263 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02134nam a2200517 cb4500</leader><controlfield tag="001">BV047306263</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220721 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210601s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030380014</subfield><subfield code="c">Hardcover</subfield><subfield code="9">978-3-030-38001-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1151827906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047306263</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borthwick, David</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1112155821</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral theory</subfield><subfield code="b">basic concepts and applications</subfield><subfield code="c">David Borthwick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer Nature Switzerland AG</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 338 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">284</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unbeschränkter Operator</subfield><subfield code="0">(DE-588)4236037-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unbeschränkter Operator</subfield><subfield code="0">(DE-588)4236037-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-38002-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">284</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">284</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032709317&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032709317</subfield></datafield></record></collection> |
id | DE-604.BV047306263 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:15:41Z |
institution | BVB |
isbn | 9783030380014 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032709317 |
oclc_num | 1151827906 |
open_access_boolean | |
owner | DE-11 DE-19 DE-BY-UBM DE-739 |
owner_facet | DE-11 DE-19 DE-BY-UBM DE-739 |
physical | x, 338 Seiten Illustrationen |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer Nature Switzerland AG |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spellingShingle | Borthwick, David Spectral theory basic concepts and applications Graduate texts in mathematics Partial Differential Equations Operator Theory Functional Analysis Partial differential equations Operator theory Functional analysis Spektraltheorie (DE-588)4116561-5 gnd Unbeschränkter Operator (DE-588)4236037-7 gnd Hilbert-Raum (DE-588)4159850-7 gnd Differentialoperator (DE-588)4012251-7 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4236037-7 (DE-588)4159850-7 (DE-588)4012251-7 |
title | Spectral theory basic concepts and applications |
title_auth | Spectral theory basic concepts and applications |
title_exact_search | Spectral theory basic concepts and applications |
title_full | Spectral theory basic concepts and applications David Borthwick |
title_fullStr | Spectral theory basic concepts and applications David Borthwick |
title_full_unstemmed | Spectral theory basic concepts and applications David Borthwick |
title_short | Spectral theory |
title_sort | spectral theory basic concepts and applications |
title_sub | basic concepts and applications |
topic | Partial Differential Equations Operator Theory Functional Analysis Partial differential equations Operator theory Functional analysis Spektraltheorie (DE-588)4116561-5 gnd Unbeschränkter Operator (DE-588)4236037-7 gnd Hilbert-Raum (DE-588)4159850-7 gnd Differentialoperator (DE-588)4012251-7 gnd |
topic_facet | Partial Differential Equations Operator Theory Functional Analysis Partial differential equations Operator theory Functional analysis Spektraltheorie Unbeschränkter Operator Hilbert-Raum Differentialoperator |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032709317&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT borthwickdavid spectraltheorybasicconceptsandapplications |