Data science for supply chain forecasting:
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Berlin
De Gruyter
[2021]
|
Edition: | 2nd edition |
Subjects: | |
Links: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | XXVIII, 282 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
ISBN: | 9783110671100 3110671107 |
Staff View
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047248433 | ||
003 | DE-604 | ||
005 | 20210531 | ||
007 | t| | ||
008 | 210421s2021 gw a||| |||| 00||| eng d | ||
015 | |a 19,N32 |2 dnb | ||
016 | 7 | |a 1191920798 |2 DE-101 | |
020 | |a 9783110671100 |c : EUR 42.99 (DE) (freier Preis), EUR 42.99 (AT) (freier Preis) |9 978-3-11-067110-0 | ||
020 | |a 3110671107 |9 3-11-067110-7 | ||
024 | 3 | |a 9783110671100 | |
035 | |a (OCoLC)1249679756 | ||
035 | |a (DE-599)DNB1191920798 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-945 |a DE-384 |a DE-863 | ||
084 | |a QP 530 |0 (DE-625)141897: |2 rvk | ||
084 | |a QP 325 |0 (DE-625)141857: |2 rvk | ||
084 | |a 330 |2 sdnb | ||
100 | 1 | |a Vandeput, Nicolas |e Verfasser |0 (DE-588)1219879223 |4 aut | |
245 | 1 | 0 | |a Data science for supply chain forecasting |c Nicolas Vandeput |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin |b De Gruyter |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a XXVIII, 282 Seiten |b Illustrationen, Diagramme |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Nachfrageermittlung |0 (DE-588)4134942-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Supply Chain Management |0 (DE-588)4684051-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognoseverfahren |0 (DE-588)4358095-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Supply Chain Management |0 (DE-588)4684051-5 |D s |
689 | 0 | 1 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Supply Chain Management |0 (DE-588)4684051-5 |D s |
689 | 1 | 1 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 1 | 2 | |a Nachfrageermittlung |0 (DE-588)4134942-8 |D s |
689 | 1 | 3 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 4 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 5 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 1 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-067120-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-067112-4 |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032652564 |
Record in the Search Index
_version_ | 1819305302692986880 |
---|---|
adam_text | CONTENTS
ACKNOWLEDGMENTS
*
VII
ABOUT
THE
AUTHOR
*
XI
FOREWORD
-
SECOND
EDITION
*
XIII
FOREWORD
-
FIRST
EDITION
*
XV
INTRODUCTION
*
XXI
PARTI:
STATISTICAL
FORECASTING
1
1.1
1.2
1.3
MOVING
AVERAGE
*
3
MOVING
AVERAGE
MODEL
-----
3
INSIGHTS
-----
4
DO
IT
YOURSELF
-----
6
2
2.1
2.2
2.3
2.4
2.5
2.6
FORECAST
KPI
*
10
FORECAST
ERROR
*
10
BIAS
*
11
MAPE
-----
14
MAE-----
16
RMSE
-----
17
WHICH
FORECAST
KPI
TO
CHOOSE?
-----
20
3
3.1
3.2
3.3
3.4
EXPONENTIAL
SMOOTHING
*
27
THE
IDEA
BEHIND
EXPONENTIAL
SMOOTHING
-----
27
MODEL
-----
28
INSIGHTS
-----
31
DO
IT
YOURSELF
----
33
4
4.1
4.2
UNDERFITTING
-----
37
CAUSES
OF
UNDERFITTING
-----38
SOLUTIONS
-----40
5
5.1
5.2
5.3
5.4
DOUBLE
EXPONENTIAL
SMOOTHING
*
41
THE
IDEA
BEHIND
DOUBLE
EXPONENTIAL
SMOOTHING
-----
41
DOUBLE
EXPONENTIAL
SMOOTHING
MODEL
-----
41
INSIGHTS
-----
44
DO
IT
YOURSELF
----
47
XVIII
*
*
CONTENTS
6
MODEL
OPTIMIZATION
*
52
6.1
EXCEL
------
52
6.2
PYTHON
------
56
7
DOUBLE
SMOOTHING
WITH
DAMPED
TREND
*
60
7.1
THE
IDEA
BEHIND
DOUBLE
SMOOTHING
WITH
DAMPED
TREND
60
7.2
MODEL
-----
60
7.3
INSIGHTS
-----
61
7.4
DO
IT
YOURSELF
-----62
8
OVERFITTING
-----
66
8.1
EXAMPLES
-----
66
8.2
CAUSES
AND
SOLUTIONS
*
68
9
TRIPLE
EXPONENTIAL
SMOOTHING
*
70
9.1
THE
IDEA
BEHIND
TRIPLE
EXPONENTIAL
SMOOTHING
*
70
9.2
MODEL
*
70
9.3
INSIGHTS
-----
74
9.4
DOLTYOURSELF
-----
77
10
OUTLIERS
*
86
10.1
LDEA#L-WINSORIZATION
*
86
10.2
IDEA
#2
-
STANDARD
DEVIATION
*
89
10.3
IDEA
#3
-
ERROR
STANDARD
DEVIATION
-----93
10.4
GO
THE
EXTRA
MILE!
-----
95
11
TRIPLE
ADDITIVE
EXPONENTIAL
SMOOTHING
*
96
11.1
THE
IDEA
BEHIND
TRIPLE
ADDITIVE
EXPONENTIAL
SMOOTHING
*
96
11.2
MODEL
-----96
11.3
INSIGHTS
-----
99
11.4
DOLTYOURSELF
*
101
PART
II:
MACHINE
LEARNING
12
MACHINE
LEARNING
*
109
12.1
MACHINE
LEARNING
FOR
DEMAND
FORECASTING
*
110
12.2
DATA
PREPARATION
-----
111
12.3
DO
IT
YOURSELF
-
DATASETS
CREATION
*
114
12.4
DO
IT
YOURSELF-
LINEAR
REGRESSION
-----
118
12.5
DO
ITYOURSELF-
FUTURE
FORECAST
*
120
CONTENTS
*
XIX
13
13.1
13.2
TREE
*
122
HOW
DOES
IT
WORK?
-----
123
DO
IT
YOURSELF
-----
126
14
14.1
14.2
14.3
14.4
PARAMETER
OPTIMIZATION
*
130
SIMPLE
EXPERIMENTS
*
130
SMARTER
EXPERIMENTS
*
131
DO
IT
YOURSELF
-----
134
RECAP
-----
137
15
15.1
15.2
15.3
15.4
FOREST
*
138
THE
WISDOM
OF
THE
CROWD
AND
ENSEMBLE
MODELS
*
138
BAGGING
TREES
IN
A
FOREST
-----
139
DO
IT
YOURSELF
-----
141
INSIGHTS
-----
144
16
16.1
FEATURE
IMPORTANCE
*
147
DO
IT
YOURSELF
-----
148
17
17.1
17.2
EXTREMELY
RANDOMIZED
TREES
*
150
DO
IT
YOURSELF
-----
150
SPEED
-----
154
18
18.1
18.2
18.3
FEATURE
OPTIMIZATION
#1
*
155
IDEA
#1
-
TRAINING
SET
-----
156
IDEA
#2
-
VALIDATION
SET
-----
159
IDEA
#3
-
HOLDOUT
DATASET
*
161
19
19.1
19.2
19.3
19.4
ADAPTIVE
BOOSTING
*
167
A
SECOND
ENSEMBLE:
BOOSTING
-----
167
ADABOOST
-----
168
INSIGHTS
-----
169
DO
IT
YOURSELF
-----
173
20
20.1
20.2
20.3
20.4
DEMAND
DRIVERS
AND
LEADING
INDICATORS
*
178
LINEAR
REGRESSIONS?-----
178
DEMAND
DRIVERSAND
MACHINE
LEARNING
*
180
ADDING
NEW
FEATURES
TO
THE
TRAINING
SET
-----
182
DO
IT
YOURSELF
-----
185
21
21.1
EXTREME
GRADIENT
BOOSTING
*
189
FROM
GRADIENT
BOOSTING
TO
EXTREME
GRADIENT
BOOSTING
-----
189
XX
CONTENTS
21.2
DOLTYOURSELF
-----
189
21.3
EARLY
STOPPING
-----
192
21.4
PARAMETER
OPTIMIZATION
*
195
22
CATEGORICAL
FEATURES
*
200
22.1
INTEGER
ENCODING
-----
200
22.2
ONE-HOT
LABEL
ENCODING
-----
203
22.3
DATASET
CREATION
*
206
23
CLUSTERING
*
209
23.1
K-MEANS
CLUSTERING
*
209
23.2
LOOKING
FOR
MEANINGFUL
CENTERS
*
211
23.3
DOLTYOURSELF
-----
214
24
FEATURE
OPTIMIZATION
#2
*
219
24.1 DATASET
CREATION
*
219
24.2
FEATURE
SELECTION
-----
222
25
NEURAL
NETWORKS
*
228
25.1
HOW
NEURAL
NETWORKS
WORK
-----
229
25.2
TRAINING
A
NEURAL
NETWORK
*
234
25.3
DOLTYOURSELF
-----
241
PART
III:
DATA-DRIVEN
FORECASTING
PROCESS
MANAGEMENT
26
JUDGMENTAL
FORECASTS
*
249
26.1
JUDGMENTAL
FORECASTS
AND
THEIR BLIND
SPOTS
------
249
26.2
SOLUTIONS
-----
252
27
FORECAST
VALUE
ADDED
*
254
27.1
PORTFOLIO
KPI
-----
254
27.2
WHAT
IS
A
GOOD
FORECAST
ERROR?
*
257
NOW
IT
*
S
YOUR
TURN!
*
263
A
PYTHON
-----
265
BIBLIOGRAPHY
*
273
GLOSSARY
*
277
INDEX
*
281
Contents Acknowledgments — VII About the Author----- XI Foreword ֊ Second Edition----- XIII Foreword - First Edition----- XV Introduction----- XXI Part I: Statistical Forecasting 1 1.1 1.2 1.3 2 2.1 2.2 2.3 2.4 2.5 2.6 3 3.1 3.2 3.3 3.4 4 4.1 4.2 5 5.1 5.2 5.3 5.4 Moving Average----- 3 Moving Average Model------3 Insights------ 4 Do It Yourself-----6 Forecast KPI----- 10 Forecast Error-----10 Bias------11 МАРЕ------14 MAE------16 RMSE------17 Which Forecast KPI to Choose?-----20 Exponential Smoothing----- 27 The Idea Behind Exponential Smoothing-----27 Model------28 Insights------ 31 Do It Yourself-----33 Underfitting------ 37 Causes of Underfitting------38 Solutions-----40 Double Exponential Smoothing------ 41 The Idea Behind Double Exponential Smoothing Double Exponential Smoothing Model-----41 Insights------ 44 DoltYourself-----47
XVIII — Contents 6 Model Optimization----- 52 6.1 Excel----- 52 6.2 Python---- 56 7 Double Smoothing with Damped Trend — 60 7.1 The Idea Behind Double Smoothing with Damped Trend 7.2 Model----- 60 7.3 Insights----- 61 7.4 Do It Yourself------ 62 8 Overfitting----- 66 8.1 Examples----- 66 8.2 Causes and Solutions----- 68 9 Triple Exponential Smoothing—70 9.1 The Idea Behind Triple Exponential Smoothing----- 70 9.2 Model----- 70 9.3 Insights----- 74 9.4 Do It Yourself------ 77 10 Outliers----- 86 10.1 Idea #l-Winsorization----- 86 10.2 Idea #2 - Standard Deviation — 89 10.3 Idea #3 - Error Standard Deviation----- 93 10.4 Go the Extra Mile!------95 11 Triple Additive Exponential Smoothing — 96 11.1 The Idea Behind Triple Additive Exponential Smoothing 11.2 Model----- 96 11.3 Insights----- 99 11.4 DoltYourself------101 Partii: Machine Learning 12 Machine Learning —109 12.1 Machine Learning for Demand Forecasting —110 12.2 Data Preparation----- 111 12.3 Do It Yourself - Datasets Creation —114 12.4 Do It Yourself - Linear Regression----- 118 12.5 Do It Yourself- Future Forecast------120
Contents J3 13 ļ շ Tree------ 122 How Does It Work?-----123 DoltYourself------126 14 14.1 14 2 14.3 14.4 Parameter Optimization —130 Simple Experiments-----130 Smarter Experiments------ 131 DoltYourself---- 134 Recap-----137 15 15.1 15.2 15.3 15.4 Forest-----138 The Wisdom of the Crowd and Ensemble Models-----138 Bagging Trees in a Forest-----139 DoltYourself-----141 Insights-----144 16 16.1 Feature Importance-----147 DoltYourself-----148 17 17.1 17.2 Extremely Randomized Trees------150 DoltYourself-----150 Speed-----154 18 18.1 18.2 18.3 Feature Optimization #1-----155 Idea #1-Training Set-----156 Idea #2-Validation Set-----159 Idea #3 - Holdout Dataset-----161 19 19.1 19.2 19.3 19.4 Adaptive Boosting —167 A Second Ensemble: Boosting------167 AdaBoost-----168 Insights-----169 DoltYourself-----173 20 20.1 20.2 20.3 20.4 Demand Drivers and Leading Indicators —178 Linear Regressions? —178 Demand Drivers and Machine Learning-----180 Adding New Features to the Training Set-----182 Do It Yourself-----185 21 21.1 Extreme Gradient Boosting----- 189 From Gradient Boosting to Extreme Gradient Boosting-----189 — XIX
XX —— Contents 21.2 21.3 Do It Yourself---- 189 Early Stopping----- 192 21.4 Parameter Optimization----- 195 22 22.1 Categorical Features — 200 Integer Encoding----- 200 22.2 One-Hot Label Encoding----- 203 22.3 Dataset Creation — 206 23 Clustering—209 23.1 К-means Clustering — 209 23.2 Looking for Meaningful Centers----- 211 23.3 Do It Yourself---- 214 24 Feature Optimization #2 — 219 24.1 Dataset Creation----- 219 24.2 Feature Selection — 222 25 Neural Networks — 228 25.1 How Neural Networks Work----- 229 25.2 Training a Neural Network----- 234 25.3 Do It Yourself-----241 Part ill: Data-Driven Forecasting Process Management 26 Judgmental Forecasts — 249 26.1 Judgmental Forecasts and Their Blind Spots — 249 26.2 Solutions----- 252 27 Forecast Value Added----- 254 27.1 Portfolio KPI----- 254 27.2 What Is a Good Forecast Error?----- 257 Now It’s Your Turn!----- 263 A Python------265 Bibliography — 273 Glossary----- 277 Index — 281
|
any_adam_object | 1 |
author | Vandeput, Nicolas |
author_GND | (DE-588)1219879223 |
author_facet | Vandeput, Nicolas |
author_role | aut |
author_sort | Vandeput, Nicolas |
author_variant | n v nv |
building | Verbundindex |
bvnumber | BV047248433 |
classification_rvk | QP 530 QP 325 |
ctrlnum | (OCoLC)1249679756 (DE-599)DNB1191920798 |
discipline | Wirtschaftswissenschaften |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02976nam a22006378c 4500</leader><controlfield tag="001">BV047248433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210531 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210421s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1191920798</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110671100</subfield><subfield code="c">: EUR 42.99 (DE) (freier Preis), EUR 42.99 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-067110-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110671107</subfield><subfield code="9">3-11-067110-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110671100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1249679756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1191920798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 530</subfield><subfield code="0">(DE-625)141897:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 325</subfield><subfield code="0">(DE-625)141857:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vandeput, Nicolas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1219879223</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data science for supply chain forecasting</subfield><subfield code="c">Nicolas Vandeput</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 282 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachfrageermittlung</subfield><subfield code="0">(DE-588)4134942-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Nachfrageermittlung</subfield><subfield code="0">(DE-588)4134942-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-067120-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-067112-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032652564</subfield></datafield></record></collection> |
id | DE-604.BV047248433 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:14:00Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110671100 3110671107 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032652564 |
oclc_num | 1249679756 |
open_access_boolean | |
owner | DE-945 DE-384 DE-863 DE-BY-FWS |
owner_facet | DE-945 DE-384 DE-863 DE-BY-FWS |
physical | XXVIII, 282 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | De Gruyter |
record_format | marc |
spellingShingle | Vandeput, Nicolas Data science for supply chain forecasting Nachfrageermittlung (DE-588)4134942-8 gnd Datenmanagement (DE-588)4213132-7 gnd Supply Chain Management (DE-588)4684051-5 gnd Prognoseverfahren (DE-588)4358095-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4134942-8 (DE-588)4213132-7 (DE-588)4684051-5 (DE-588)4358095-6 (DE-588)4193754-5 (DE-588)4033447-8 |
title | Data science for supply chain forecasting |
title_auth | Data science for supply chain forecasting |
title_exact_search | Data science for supply chain forecasting |
title_full | Data science for supply chain forecasting Nicolas Vandeput |
title_fullStr | Data science for supply chain forecasting Nicolas Vandeput |
title_full_unstemmed | Data science for supply chain forecasting Nicolas Vandeput |
title_short | Data science for supply chain forecasting |
title_sort | data science for supply chain forecasting |
topic | Nachfrageermittlung (DE-588)4134942-8 gnd Datenmanagement (DE-588)4213132-7 gnd Supply Chain Management (DE-588)4684051-5 gnd Prognoseverfahren (DE-588)4358095-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Nachfrageermittlung Datenmanagement Supply Chain Management Prognoseverfahren Maschinelles Lernen Künstliche Intelligenz |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vandeputnicolas datascienceforsupplychainforecasting AT walterdegruytergmbhcokg datascienceforsupplychainforecasting |