Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Data science for supply chain...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Data science for supply chain forecasting:
Saved in:
Bibliographic Details
Main Author: Vandeput, Nicolas (Author)
Format: Book
Language:English
Published: Berlin De Gruyter [2021]
Edition:2nd edition
Subjects:
Nachfrageermittlung
Datenmanagement
Supply Chain Management
Prognoseverfahren
Maschinelles Lernen
Künstliche Intelligenz
Links:http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:XXVIII, 282 Seiten Illustrationen, Diagramme 24 cm x 17 cm
ISBN:9783110671100
3110671107
Staff View

MARC

LEADER 00000nam a22000008c 4500
001 BV047248433
003 DE-604
005 20210531
007 t|
008 210421s2021 gw a||| |||| 00||| eng d
015 |a 19,N32  |2 dnb 
016 7 |a 1191920798  |2 DE-101 
020 |a 9783110671100  |c : EUR 42.99 (DE) (freier Preis), EUR 42.99 (AT) (freier Preis)  |9 978-3-11-067110-0 
020 |a 3110671107  |9 3-11-067110-7 
024 3 |a 9783110671100 
035 |a (OCoLC)1249679756 
035 |a (DE-599)DNB1191920798 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-945  |a DE-384  |a DE-863 
084 |a QP 530  |0 (DE-625)141897:  |2 rvk 
084 |a QP 325  |0 (DE-625)141857:  |2 rvk 
084 |a 330  |2 sdnb 
100 1 |a Vandeput, Nicolas  |e Verfasser  |0 (DE-588)1219879223  |4 aut 
245 1 0 |a Data science for supply chain forecasting  |c Nicolas Vandeput 
250 |a 2nd edition 
264 1 |a Berlin  |b De Gruyter  |c [2021] 
264 4 |c © 2021 
300 |a XXVIII, 282 Seiten  |b Illustrationen, Diagramme  |c 24 cm x 17 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Nachfrageermittlung  |0 (DE-588)4134942-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenmanagement  |0 (DE-588)4213132-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Supply Chain Management  |0 (DE-588)4684051-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Prognoseverfahren  |0 (DE-588)4358095-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Supply Chain Management  |0 (DE-588)4684051-5  |D s 
689 0 1 |a Prognoseverfahren  |0 (DE-588)4358095-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Supply Chain Management  |0 (DE-588)4684051-5  |D s 
689 1 1 |a Prognoseverfahren  |0 (DE-588)4358095-6  |D s 
689 1 2 |a Nachfrageermittlung  |0 (DE-588)4134942-8  |D s 
689 1 3 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |D s 
689 1 4 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 1 5 |a Datenmanagement  |0 (DE-588)4213132-7  |D s 
689 1 |5 DE-604 
710 2 |a Walter de Gruyter GmbH & Co. KG  |0 (DE-588)10095502-2  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-3-11-067120-9 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, PDF  |z 978-3-11-067112-4 
856 4 2 |m X:MVB  |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032652564 

Record in the Search Index

_version_ 1819305302692986880
adam_text CONTENTS ACKNOWLEDGMENTS * VII ABOUT THE AUTHOR * XI FOREWORD - SECOND EDITION * XIII FOREWORD - FIRST EDITION * XV INTRODUCTION * XXI PARTI: STATISTICAL FORECASTING 1 1.1 1.2 1.3 MOVING AVERAGE * 3 MOVING AVERAGE MODEL ----- 3 INSIGHTS ----- 4 DO IT YOURSELF ----- 6 2 2.1 2.2 2.3 2.4 2.5 2.6 FORECAST KPI * 10 FORECAST ERROR * 10 BIAS * 11 MAPE ----- 14 MAE----- 16 RMSE ----- 17 WHICH FORECAST KPI TO CHOOSE? ----- 20 3 3.1 3.2 3.3 3.4 EXPONENTIAL SMOOTHING * 27 THE IDEA BEHIND EXPONENTIAL SMOOTHING ----- 27 MODEL ----- 28 INSIGHTS ----- 31 DO IT YOURSELF ---- 33 4 4.1 4.2 UNDERFITTING ----- 37 CAUSES OF UNDERFITTING -----38 SOLUTIONS -----40 5 5.1 5.2 5.3 5.4 DOUBLE EXPONENTIAL SMOOTHING * 41 THE IDEA BEHIND DOUBLE EXPONENTIAL SMOOTHING ----- 41 DOUBLE EXPONENTIAL SMOOTHING MODEL ----- 41 INSIGHTS ----- 44 DO IT YOURSELF ---- 47 XVIII * * CONTENTS 6 MODEL OPTIMIZATION * 52 6.1 EXCEL ------ 52 6.2 PYTHON ------ 56 7 DOUBLE SMOOTHING WITH DAMPED TREND * 60 7.1 THE IDEA BEHIND DOUBLE SMOOTHING WITH DAMPED TREND 60 7.2 MODEL ----- 60 7.3 INSIGHTS ----- 61 7.4 DO IT YOURSELF -----62 8 OVERFITTING ----- 66 8.1 EXAMPLES ----- 66 8.2 CAUSES AND SOLUTIONS * 68 9 TRIPLE EXPONENTIAL SMOOTHING * 70 9.1 THE IDEA BEHIND TRIPLE EXPONENTIAL SMOOTHING * 70 9.2 MODEL * 70 9.3 INSIGHTS ----- 74 9.4 DOLTYOURSELF ----- 77 10 OUTLIERS * 86 10.1 LDEA#L-WINSORIZATION * 86 10.2 IDEA #2 - STANDARD DEVIATION * 89 10.3 IDEA #3 - ERROR STANDARD DEVIATION -----93 10.4 GO THE EXTRA MILE! ----- 95 11 TRIPLE ADDITIVE EXPONENTIAL SMOOTHING * 96 11.1 THE IDEA BEHIND TRIPLE ADDITIVE EXPONENTIAL SMOOTHING * 96 11.2 MODEL -----96 11.3 INSIGHTS ----- 99 11.4 DOLTYOURSELF * 101 PART II: MACHINE LEARNING 12 MACHINE LEARNING * 109 12.1 MACHINE LEARNING FOR DEMAND FORECASTING * 110 12.2 DATA PREPARATION ----- 111 12.3 DO IT YOURSELF - DATASETS CREATION * 114 12.4 DO IT YOURSELF- LINEAR REGRESSION ----- 118 12.5 DO ITYOURSELF- FUTURE FORECAST * 120 CONTENTS * XIX 13 13.1 13.2 TREE * 122 HOW DOES IT WORK? ----- 123 DO IT YOURSELF ----- 126 14 14.1 14.2 14.3 14.4 PARAMETER OPTIMIZATION * 130 SIMPLE EXPERIMENTS * 130 SMARTER EXPERIMENTS * 131 DO IT YOURSELF ----- 134 RECAP ----- 137 15 15.1 15.2 15.3 15.4 FOREST * 138 THE WISDOM OF THE CROWD AND ENSEMBLE MODELS * 138 BAGGING TREES IN A FOREST ----- 139 DO IT YOURSELF ----- 141 INSIGHTS ----- 144 16 16.1 FEATURE IMPORTANCE * 147 DO IT YOURSELF ----- 148 17 17.1 17.2 EXTREMELY RANDOMIZED TREES * 150 DO IT YOURSELF ----- 150 SPEED ----- 154 18 18.1 18.2 18.3 FEATURE OPTIMIZATION #1 * 155 IDEA #1 - TRAINING SET ----- 156 IDEA #2 - VALIDATION SET ----- 159 IDEA #3 - HOLDOUT DATASET * 161 19 19.1 19.2 19.3 19.4 ADAPTIVE BOOSTING * 167 A SECOND ENSEMBLE: BOOSTING ----- 167 ADABOOST ----- 168 INSIGHTS ----- 169 DO IT YOURSELF ----- 173 20 20.1 20.2 20.3 20.4 DEMAND DRIVERS AND LEADING INDICATORS * 178 LINEAR REGRESSIONS?----- 178 DEMAND DRIVERSAND MACHINE LEARNING * 180 ADDING NEW FEATURES TO THE TRAINING SET ----- 182 DO IT YOURSELF ----- 185 21 21.1 EXTREME GRADIENT BOOSTING * 189 FROM GRADIENT BOOSTING TO EXTREME GRADIENT BOOSTING ----- 189 XX CONTENTS 21.2 DOLTYOURSELF ----- 189 21.3 EARLY STOPPING ----- 192 21.4 PARAMETER OPTIMIZATION * 195 22 CATEGORICAL FEATURES * 200 22.1 INTEGER ENCODING ----- 200 22.2 ONE-HOT LABEL ENCODING ----- 203 22.3 DATASET CREATION * 206 23 CLUSTERING * 209 23.1 K-MEANS CLUSTERING * 209 23.2 LOOKING FOR MEANINGFUL CENTERS * 211 23.3 DOLTYOURSELF ----- 214 24 FEATURE OPTIMIZATION #2 * 219 24.1 DATASET CREATION * 219 24.2 FEATURE SELECTION ----- 222 25 NEURAL NETWORKS * 228 25.1 HOW NEURAL NETWORKS WORK ----- 229 25.2 TRAINING A NEURAL NETWORK * 234 25.3 DOLTYOURSELF ----- 241 PART III: DATA-DRIVEN FORECASTING PROCESS MANAGEMENT 26 JUDGMENTAL FORECASTS * 249 26.1 JUDGMENTAL FORECASTS AND THEIR BLIND SPOTS ------ 249 26.2 SOLUTIONS ----- 252 27 FORECAST VALUE ADDED * 254 27.1 PORTFOLIO KPI ----- 254 27.2 WHAT IS A GOOD FORECAST ERROR? * 257 NOW IT * S YOUR TURN! * 263 A PYTHON ----- 265 BIBLIOGRAPHY * 273 GLOSSARY * 277 INDEX * 281 Contents Acknowledgments — VII About the Author----- XI Foreword ֊ Second Edition----- XIII Foreword - First Edition----- XV Introduction----- XXI Part I: Statistical Forecasting 1 1.1 1.2 1.3 2 2.1 2.2 2.3 2.4 2.5 2.6 3 3.1 3.2 3.3 3.4 4 4.1 4.2 5 5.1 5.2 5.3 5.4 Moving Average----- 3 Moving Average Model------3 Insights------ 4 Do It Yourself-----6 Forecast KPI----- 10 Forecast Error-----10 Bias------11 МАРЕ------14 MAE------16 RMSE------17 Which Forecast KPI to Choose?-----20 Exponential Smoothing----- 27 The Idea Behind Exponential Smoothing-----27 Model------28 Insights------ 31 Do It Yourself-----33 Underfitting------ 37 Causes of Underfitting------38 Solutions-----40 Double Exponential Smoothing------ 41 The Idea Behind Double Exponential Smoothing Double Exponential Smoothing Model-----41 Insights------ 44 DoltYourself-----47 XVIII — Contents 6 Model Optimization----- 52 6.1 Excel----- 52 6.2 Python---- 56 7 Double Smoothing with Damped Trend — 60 7.1 The Idea Behind Double Smoothing with Damped Trend 7.2 Model----- 60 7.3 Insights----- 61 7.4 Do It Yourself------ 62 8 Overfitting----- 66 8.1 Examples----- 66 8.2 Causes and Solutions----- 68 9 Triple Exponential Smoothing—70 9.1 The Idea Behind Triple Exponential Smoothing----- 70 9.2 Model----- 70 9.3 Insights----- 74 9.4 Do It Yourself------ 77 10 Outliers----- 86 10.1 Idea #l-Winsorization----- 86 10.2 Idea #2 - Standard Deviation — 89 10.3 Idea #3 - Error Standard Deviation----- 93 10.4 Go the Extra Mile!------95 11 Triple Additive Exponential Smoothing — 96 11.1 The Idea Behind Triple Additive Exponential Smoothing 11.2 Model----- 96 11.3 Insights----- 99 11.4 DoltYourself------101 Partii: Machine Learning 12 Machine Learning —109 12.1 Machine Learning for Demand Forecasting —110 12.2 Data Preparation----- 111 12.3 Do It Yourself - Datasets Creation —114 12.4 Do It Yourself - Linear Regression----- 118 12.5 Do It Yourself- Future Forecast------120 Contents J3 13 ļ շ Tree------ 122 How Does It Work?-----123 DoltYourself------126 14 14.1 14 2 14.3 14.4 Parameter Optimization —130 Simple Experiments-----130 Smarter Experiments------ 131 DoltYourself---- 134 Recap-----137 15 15.1 15.2 15.3 15.4 Forest-----138 The Wisdom of the Crowd and Ensemble Models-----138 Bagging Trees in a Forest-----139 DoltYourself-----141 Insights-----144 16 16.1 Feature Importance-----147 DoltYourself-----148 17 17.1 17.2 Extremely Randomized Trees------150 DoltYourself-----150 Speed-----154 18 18.1 18.2 18.3 Feature Optimization #1-----155 Idea #1-Training Set-----156 Idea #2-Validation Set-----159 Idea #3 - Holdout Dataset-----161 19 19.1 19.2 19.3 19.4 Adaptive Boosting —167 A Second Ensemble: Boosting------167 AdaBoost-----168 Insights-----169 DoltYourself-----173 20 20.1 20.2 20.3 20.4 Demand Drivers and Leading Indicators —178 Linear Regressions? —178 Demand Drivers and Machine Learning-----180 Adding New Features to the Training Set-----182 Do It Yourself-----185 21 21.1 Extreme Gradient Boosting----- 189 From Gradient Boosting to Extreme Gradient Boosting-----189 — XIX XX —— Contents 21.2 21.3 Do It Yourself---- 189 Early Stopping----- 192 21.4 Parameter Optimization----- 195 22 22.1 Categorical Features — 200 Integer Encoding----- 200 22.2 One-Hot Label Encoding----- 203 22.3 Dataset Creation — 206 23 Clustering—209 23.1 К-means Clustering — 209 23.2 Looking for Meaningful Centers----- 211 23.3 Do It Yourself---- 214 24 Feature Optimization #2 — 219 24.1 Dataset Creation----- 219 24.2 Feature Selection — 222 25 Neural Networks — 228 25.1 How Neural Networks Work----- 229 25.2 Training a Neural Network----- 234 25.3 Do It Yourself-----241 Part ill: Data-Driven Forecasting Process Management 26 Judgmental Forecasts — 249 26.1 Judgmental Forecasts and Their Blind Spots — 249 26.2 Solutions----- 252 27 Forecast Value Added----- 254 27.1 Portfolio KPI----- 254 27.2 What Is a Good Forecast Error?----- 257 Now It’s Your Turn!----- 263 A Python------265 Bibliography — 273 Glossary----- 277 Index — 281
any_adam_object 1
author Vandeput, Nicolas
author_GND (DE-588)1219879223
author_facet Vandeput, Nicolas
author_role aut
author_sort Vandeput, Nicolas
author_variant n v nv
building Verbundindex
bvnumber BV047248433
classification_rvk QP 530
QP 325
ctrlnum (OCoLC)1249679756
(DE-599)DNB1191920798
discipline Wirtschaftswissenschaften
edition 2nd edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02976nam a22006378c 4500</leader><controlfield tag="001">BV047248433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210531 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210421s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1191920798</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110671100</subfield><subfield code="c">: EUR 42.99 (DE) (freier Preis), EUR 42.99 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-067110-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110671107</subfield><subfield code="9">3-11-067110-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110671100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1249679756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1191920798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 530</subfield><subfield code="0">(DE-625)141897:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 325</subfield><subfield code="0">(DE-625)141857:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vandeput, Nicolas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1219879223</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data science for supply chain forecasting</subfield><subfield code="c">Nicolas Vandeput</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 282 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachfrageermittlung</subfield><subfield code="0">(DE-588)4134942-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Supply Chain Management</subfield><subfield code="0">(DE-588)4684051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Nachfrageermittlung</subfield><subfield code="0">(DE-588)4134942-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH &amp; Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-067120-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-067112-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&amp;q_0=9783110671100&amp;searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032652564&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=032652564&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032652564</subfield></datafield></record></collection>
id DE-604.BV047248433
illustrated Illustrated
indexdate 2024-12-20T19:14:00Z
institution BVB
institution_GND (DE-588)10095502-2
isbn 9783110671100
3110671107
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032652564
oclc_num 1249679756
open_access_boolean
owner DE-945
DE-384
DE-863
DE-BY-FWS
owner_facet DE-945
DE-384
DE-863
DE-BY-FWS
physical XXVIII, 282 Seiten Illustrationen, Diagramme 24 cm x 17 cm
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher De Gruyter
record_format marc
spellingShingle Vandeput, Nicolas
Data science for supply chain forecasting
Nachfrageermittlung (DE-588)4134942-8 gnd
Datenmanagement (DE-588)4213132-7 gnd
Supply Chain Management (DE-588)4684051-5 gnd
Prognoseverfahren (DE-588)4358095-6 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Künstliche Intelligenz (DE-588)4033447-8 gnd
subject_GND (DE-588)4134942-8
(DE-588)4213132-7
(DE-588)4684051-5
(DE-588)4358095-6
(DE-588)4193754-5
(DE-588)4033447-8
title Data science for supply chain forecasting
title_auth Data science for supply chain forecasting
title_exact_search Data science for supply chain forecasting
title_full Data science for supply chain forecasting Nicolas Vandeput
title_fullStr Data science for supply chain forecasting Nicolas Vandeput
title_full_unstemmed Data science for supply chain forecasting Nicolas Vandeput
title_short Data science for supply chain forecasting
title_sort data science for supply chain forecasting
topic Nachfrageermittlung (DE-588)4134942-8 gnd
Datenmanagement (DE-588)4213132-7 gnd
Supply Chain Management (DE-588)4684051-5 gnd
Prognoseverfahren (DE-588)4358095-6 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Künstliche Intelligenz (DE-588)4033447-8 gnd
topic_facet Nachfrageermittlung
Datenmanagement
Supply Chain Management
Prognoseverfahren
Maschinelles Lernen
Künstliche Intelligenz
url http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110671100&searchTitles=true
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032652564&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT vandeputnicolas datascienceforsupplychainforecasting
AT walterdegruytergmbhcokg datascienceforsupplychainforecasting
  • Availability

‌

Order via interlibrary loan Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline