Unsupervised machine learning for clustering in political and social research:
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers r...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schriftenreihe: | Elements in Quantitative and Computational Methods for the Social Sciences
|
Zusammenfassung: | In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering |
Beschreibung: | 1. Introduction; 2. Setting the stage for clustering; 3. Agglomerative hierarchical clustering; 4. k-means clustering; 5. Gaussian mixture models; 6. Advanced methods; 7. Conclusion |
Umfang: | 60 Seiten Illustrationen, Diagramme |
ISBN: | 9781108793384 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047188366 | ||
003 | DE-604 | ||
005 | 20210416 | ||
007 | t| | ||
008 | 210309s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9781108793384 |9 978-1-108-79338-4 | ||
024 | 3 | |a 9781108793384 | |
035 | |a (OCoLC)1249664369 | ||
035 | |a (DE-599)BVBBV047188366 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
100 | 1 | |a Waggoner, Philip D. |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1228365040 |4 aut | |
245 | 1 | 0 | |a Unsupervised machine learning for clustering in political and social research |c Philip D. Waggoner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 60 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Elements in Quantitative and Computational Methods for the Social Sciences | |
500 | |a 1. Introduction; 2. Setting the stage for clustering; 3. Agglomerative hierarchical clustering; 4. k-means clustering; 5. Gaussian mixture models; 6. Advanced methods; 7. Conclusion | ||
520 | |a In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering | ||
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-88395-5 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032593615 |
Datensatz im Suchindex
_version_ | 1818987789387038720 |
---|---|
any_adam_object | |
author | Waggoner, Philip D. ca. 20./21. Jh |
author_GND | (DE-588)1228365040 |
author_facet | Waggoner, Philip D. ca. 20./21. Jh |
author_role | aut |
author_sort | Waggoner, Philip D. ca. 20./21. Jh |
author_variant | p d w pd pdw |
building | Verbundindex |
bvnumber | BV047188366 |
ctrlnum | (OCoLC)1249664369 (DE-599)BVBBV047188366 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02141nam a2200313 c 4500</leader><controlfield tag="001">BV047188366</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210416 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">210309s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108793384</subfield><subfield code="9">978-1-108-79338-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781108793384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1249664369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047188366</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waggoner, Philip D.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1228365040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsupervised machine learning for clustering in political and social research</subfield><subfield code="c">Philip D. Waggoner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">60 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Elements in Quantitative and Computational Methods for the Social Sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction; 2. Setting the stage for clustering; 3. Agglomerative hierarchical clustering; 4. k-means clustering; 5. Gaussian mixture models; 6. Advanced methods; 7. Conclusion</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-88395-5</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032593615</subfield></datafield></record></collection> |
id | DE-604.BV047188366 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:12:16Z |
institution | BVB |
isbn | 9781108793384 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032593615 |
oclc_num | 1249664369 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | 60 Seiten Illustrationen, Diagramme |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Elements in Quantitative and Computational Methods for the Social Sciences |
spelling | Waggoner, Philip D. ca. 20./21. Jh. Verfasser (DE-588)1228365040 aut Unsupervised machine learning for clustering in political and social research Philip D. Waggoner Cambridge Cambridge University Press 2020 60 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Elements in Quantitative and Computational Methods for the Social Sciences 1. Introduction; 2. Setting the stage for clustering; 3. Agglomerative hierarchical clustering; 4. k-means clustering; 5. Gaussian mixture models; 6. Advanced methods; 7. Conclusion In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering Erscheint auch als Online-Ausgabe 978-1-108-88395-5 |
spellingShingle | Waggoner, Philip D. ca. 20./21. Jh Unsupervised machine learning for clustering in political and social research |
title | Unsupervised machine learning for clustering in political and social research |
title_auth | Unsupervised machine learning for clustering in political and social research |
title_exact_search | Unsupervised machine learning for clustering in political and social research |
title_full | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_fullStr | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_full_unstemmed | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_short | Unsupervised machine learning for clustering in political and social research |
title_sort | unsupervised machine learning for clustering in political and social research |
work_keys_str_mv | AT waggonerphilipd unsupervisedmachinelearningforclusteringinpoliticalandsocialresearch |