Unsupervised machine learning for clustering in political and social research:
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers r...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2020
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/9781108883955 https://doi.org/10.1017/9781108883955 https://doi.org/10.1017/9781108883955 |
Zusammenfassung: | In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering |
Beschreibung: | Title from publisher's bibliographic system (viewed on 11 Jan 2021) |
Umfang: | 1 Online-Ressource (60 Seiten) |
ISBN: | 9781108883955 |
DOI: | 10.1017/9781108883955 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047171590 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210302s2020 xx o|||| 00||| eng d | ||
020 | |a 9781108883955 |c Online |9 978-1-108-88395-5 | ||
024 | 7 | |a 10.1017/9781108883955 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108883955 | ||
035 | |a (OCoLC)1240408216 | ||
035 | |a (DE-599)BVBBV047171590 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 300.72 | |
100 | 1 | |a Waggoner, Philip D. |d ca. 20./21. Jh. |0 (DE-588)1228365040 |4 aut | |
245 | 1 | 0 | |a Unsupervised machine learning for clustering in political and social research |c Philip D. Waggoner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2020 | |
300 | |a 1 Online-Ressource (60 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 11 Jan 2021) | ||
520 | |a In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering | ||
650 | 4 | |a Social sciences / Research | |
650 | 4 | |a Political science / Research | |
650 | 4 | |a Cluster analysis / Computer programs | |
650 | 4 | |a Machine learning | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-79338-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108883955 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032577046 | |
966 | e | |u https://doi.org/10.1017/9781108883955 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108883955 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818987757053149184 |
---|---|
any_adam_object | |
author | Waggoner, Philip D. ca. 20./21. Jh |
author_GND | (DE-588)1228365040 |
author_facet | Waggoner, Philip D. ca. 20./21. Jh |
author_role | aut |
author_sort | Waggoner, Philip D. ca. 20./21. Jh |
author_variant | p d w pd pdw |
building | Verbundindex |
bvnumber | BV047171590 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108883955 (OCoLC)1240408216 (DE-599)BVBBV047171590 |
dewey-full | 300.72 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 300 - Social sciences |
dewey-raw | 300.72 |
dewey-search | 300.72 |
dewey-sort | 3300.72 |
dewey-tens | 300 - Social sciences |
discipline | Soziologie |
doi_str_mv | 10.1017/9781108883955 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02539nam a2200421zc 4500</leader><controlfield tag="001">BV047171590</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210302s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108883955</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-88395-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108883955</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108883955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1240408216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047171590</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300.72</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waggoner, Philip D.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1228365040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsupervised machine learning for clustering in political and social research</subfield><subfield code="c">Philip D. Waggoner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (60 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 11 Jan 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences / Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Political science / Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis / Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-79338-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108883955</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032577046</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108883955</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108883955</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047171590 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:11:45Z |
institution | BVB |
isbn | 9781108883955 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032577046 |
oclc_num | 1240408216 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (60 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Waggoner, Philip D. ca. 20./21. Jh. (DE-588)1228365040 aut Unsupervised machine learning for clustering in political and social research Philip D. Waggoner Cambridge Cambridge University Press 2020 1 Online-Ressource (60 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 11 Jan 2021) In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering Social sciences / Research Political science / Research Cluster analysis / Computer programs Machine learning Erscheint auch als Druck-Ausgabe 978-1-108-79338-4 https://doi.org/10.1017/9781108883955 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Waggoner, Philip D. ca. 20./21. Jh Unsupervised machine learning for clustering in political and social research Social sciences / Research Political science / Research Cluster analysis / Computer programs Machine learning |
title | Unsupervised machine learning for clustering in political and social research |
title_auth | Unsupervised machine learning for clustering in political and social research |
title_exact_search | Unsupervised machine learning for clustering in political and social research |
title_full | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_fullStr | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_full_unstemmed | Unsupervised machine learning for clustering in political and social research Philip D. Waggoner |
title_short | Unsupervised machine learning for clustering in political and social research |
title_sort | unsupervised machine learning for clustering in political and social research |
topic | Social sciences / Research Political science / Research Cluster analysis / Computer programs Machine learning |
topic_facet | Social sciences / Research Political science / Research Cluster analysis / Computer programs Machine learning |
url | https://doi.org/10.1017/9781108883955 |
work_keys_str_mv | AT waggonerphilipd unsupervisedmachinelearningforclusteringinpoliticalandsocialresearch |