Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Mild Differentiability Conditi...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Main Authors: Ezquerro Fernandez, José Antonio (Author), Hernández Verón, Miguel Ángel (Author)
Format: Electronic eBook
Language:English
Published: Cham Springer International Publishing 2020
Cham Birkhäuser
Edition:1st ed. 2020
Series:Frontiers in Mathematics
Subjects:
Operator Theory
Numerical Analysis
Integral Equations
Ordinary Differential Equations
Partial Differential Equations
Operator theory
Numerical analysis
Integral equations
Differential equations
Partial differential equations
Links:https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
https://doi.org/10.1007/978-3-030-48702-7
Physical Description:1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color)
ISBN:9783030487027
ISSN:1660-8046
DOI:10.1007/978-3-030-48702-7
Staff View

MARC

LEADER 00000nam a2200000zcb4500
001 BV046835057
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 200803s2020 xx o|||| 00||| eng d
020 |a 9783030487027  |c Online  |9 978-3-030-48702-7 
024 7 |a 10.1007/978-3-030-48702-7  |2 doi 
035 |a (ZDB-2-SMA)9783030487027 
035 |a (OCoLC)1193290622 
035 |a (DE-599)BVBBV046835057 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-188  |a DE-523  |a DE-863  |a DE-20  |a DE-862  |a DE-92  |a DE-824  |a DE-384  |a DE-703  |a DE-739  |a DE-634 
082 0 |a 515.724  |2 23 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Ezquerro Fernandez, José Antonio  |e Verfasser  |4 aut 
245 1 0 |a Mild Differentiability Conditions for Newton's Method in Banach Spaces  |c by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón 
250 |a 1st ed. 2020 
264 1 |a Cham  |b Springer International Publishing  |c 2020 
264 1 |a Cham  |b Birkhäuser 
300 |a 1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Frontiers in Mathematics  |x 1660-8046 
650 4 |a Operator Theory 
650 4 |a Numerical Analysis 
650 4 |a Integral Equations 
650 4 |a Ordinary Differential Equations 
650 4 |a Partial Differential Equations 
650 4 |a Operator theory 
650 4 |a Numerical analysis 
650 4 |a Integral equations 
650 4 |a Differential equations 
650 4 |a Partial differential equations 
700 1 |a Hernández Verón, Miguel Ángel  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-030-48701-0 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-030-48703-4 
856 4 0 |u https://doi.org/10.1007/978-3-030-48702-7  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2020_Fremddaten 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032244143 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-92  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-863  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-862  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-523  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-384  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-030-48702-7  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Record in the Search Index

DE-BY-OTHR_katkey 6304845
DE-BY-TUM_katkey 2488188
_version_ 1831257382372507648
any_adam_object
author Ezquerro Fernandez, José Antonio
Hernández Verón, Miguel Ángel
author_facet Ezquerro Fernandez, José Antonio
Hernández Verón, Miguel Ángel
author_role aut
aut
author_sort Ezquerro Fernandez, José Antonio
author_variant f j a e fja fjae
v m á h vmá vmáh
building Verbundindex
bvnumber BV046835057
classification_rvk SK 920
SK 620
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783030487027
(OCoLC)1193290622
(DE-599)BVBBV046835057
dewey-full 515.724
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.724
dewey-search 515.724
dewey-sort 3515.724
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-030-48702-7
edition 1st ed. 2020
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03430nam a2200721zcb4500</leader><controlfield tag="001">BV046835057</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200803s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030487027</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-48702-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-48702-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030487027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1193290622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046835057</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ezquerro Fernandez, José Antonio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mild Differentiability Conditions for Newton's Method in Banach Spaces</subfield><subfield code="c">by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in Mathematics</subfield><subfield code="x">1660-8046</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hernández Verón, Miguel Ángel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-48701-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-48703-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2020_Fremddaten</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032244143</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-48702-7</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046835057
illustrated Not Illustrated
indexdate 2024-12-20T19:02:21Z
institution BVB
isbn 9783030487027
issn 1660-8046
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032244143
oclc_num 1193290622
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-863
DE-BY-FWS
DE-20
DE-862
DE-BY-FWS
DE-92
DE-824
DE-384
DE-703
DE-739
DE-634
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-863
DE-BY-FWS
DE-20
DE-862
DE-BY-FWS
DE-92
DE-824
DE-384
DE-703
DE-739
DE-634
physical 1 Online-Ressource (XIII, 178 p. 51 illus., 45 illus. in color)
psigel ZDB-2-SMA
ZDB-2-SMA_2020_Fremddaten
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Springer International Publishing
Birkhäuser
record_format marc
series2 Frontiers in Mathematics
spellingShingle Ezquerro Fernandez, José Antonio
Hernández Verón, Miguel Ángel
Mild Differentiability Conditions for Newton's Method in Banach Spaces
Operator Theory
Numerical Analysis
Integral Equations
Ordinary Differential Equations
Partial Differential Equations
Operator theory
Numerical analysis
Integral equations
Differential equations
Partial differential equations
title Mild Differentiability Conditions for Newton's Method in Banach Spaces
title_auth Mild Differentiability Conditions for Newton's Method in Banach Spaces
title_exact_search Mild Differentiability Conditions for Newton's Method in Banach Spaces
title_full Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón
title_fullStr Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón
title_full_unstemmed Mild Differentiability Conditions for Newton's Method in Banach Spaces by José Antonio Ezquerro Fernandez, Miguel Ángel Hernández Verón
title_short Mild Differentiability Conditions for Newton's Method in Banach Spaces
title_sort mild differentiability conditions for newton s method in banach spaces
topic Operator Theory
Numerical Analysis
Integral Equations
Ordinary Differential Equations
Partial Differential Equations
Operator theory
Numerical analysis
Integral equations
Differential equations
Partial differential equations
topic_facet Operator Theory
Numerical Analysis
Integral Equations
Ordinary Differential Equations
Partial Differential Equations
Operator theory
Numerical analysis
Integral equations
Differential equations
Partial differential equations
url https://doi.org/10.1007/978-3-030-48702-7
work_keys_str_mv AT ezquerrofernandezjoseantonio milddifferentiabilityconditionsfornewtonsmethodinbanachspaces
AT hernandezveronmiguelangel milddifferentiabilityconditionsfornewtonsmethodinbanachspaces
  • Availability
Order (Login required)
Read online
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline