Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Practical statistics for data...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Bruce, Peter C. 1953- (VerfasserIn), Bruce, Andrew (VerfasserIn), Gedeck, Peter (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Beijing O'Reilly May 2020
Ausgabe:Second edition
Schlagwörter:
Mathematical analysis / Statistical methods
Quantitative research / Statistical methods
Big data / Mathematics
Big Data
Data Mining
R > Programm
Python > Programmiersprache
Datenanalyse
Data Science
Statistik
Links:https://ebookcentral.proquest.com/lib/th-ab/detail.action?docID=6173908
https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6173908
https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6173908
https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6173908
Umfang:1 Online-Ressource (xvi, 342 Seiten)
ISBN:9781492072911
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV046803637
003 DE-604
005 20230801
007 cr|uuu---uuuuu
008 200713s2020 xx o|||| 00||| eng d
020 |a 9781492072911  |c online  |9 978-1-492-07291-1 
035 |a (OCoLC)1190674899 
035 |a (DE-599)BVBBV046803637 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1050  |a DE-1043  |a DE-355  |a DE-29 
084 |a SK 850  |0 (DE-625)143263:  |2 rvk 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
100 1 |a Bruce, Peter C.  |d 1953-  |e Verfasser  |0 (DE-588)1104275260  |4 aut 
245 1 0 |a Practical statistics for data scientists  |b 50+ essential concepts using R and Python  |c Peter Bruce, Andrew Bruce, and Peter Gedeck 
250 |a Second edition 
264 1 |a Beijing  |b O'Reilly  |c May 2020 
300 |a 1 Online-Ressource (xvi, 342 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
505 8 |a Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Exploratory Data Analysis -- Elements of Structured Data -- Further Reading -- Rectangular Data -- Data Frames and Indexes -- Nonrectangular Data Structures -- Further Reading -- Estimates of Location -- Mean -- Median and Robust Estimates -- Example: Location Estimates of Population and Murder Rates -- Further Reading -- Estimates of Variability -- Standard Deviation and Related Estimates 
505 8 |a Estimates Based on Percentiles -- Example: Variability Estimates of State Population -- Further Reading -- Exploring the Data Distribution -- Percentiles and Boxplots -- Frequency Tables and Histograms -- Density Plots and Estimates -- Further Reading -- Exploring Binary and Categorical Data -- Mode -- Expected Value -- Probability -- Further Reading -- Correlation -- Scatterplots -- Further Reading -- Exploring Two or More Variables -- Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data) -- Two Categorical Variables -- Categorical and Numeric Data 
505 8 |a Visualizing Multiple Variables -- Further Reading -- Summary -- Chapter 2. Data and Sampling Distributions -- Random Sampling and Sample Bias -- Bias -- Random Selection -- Size Versus Quality: When Does Size Matter? -- Sample Mean Versus Population Mean -- Further Reading -- Selection Bias -- Regression to the Mean -- Further Reading -- Sampling Distribution of a Statistic -- Central Limit Theorem -- Standard Error -- Further Reading -- The Bootstrap -- Resampling Versus Bootstrapping -- Further Reading -- Confidence Intervals -- Further Reading -- Normal Distribution 
505 8 |a Standard Normal and QQ-Plots -- Long-Tailed Distributions -- Further Reading -- Student's t-Distribution -- Further Reading -- Binomial Distribution -- Further Reading -- Chi-Square Distribution -- Further Reading -- F-Distribution -- Further Reading -- Poisson and Related Distributions -- Poisson Distributions -- Exponential Distribution -- Estimating the Failure Rate -- Weibull Distribution -- Further Reading -- Summary -- Chapter 3. Statistical Experiments and Significance Testing -- A/B Testing -- Why Have a Control Group? -- Why Just A/B? Why Not C, D,...? -- Further Reading 
505 8 |a Hypothesis Tests -- The Null Hypothesis -- Alternative Hypothesis -- One-Way Versus Two-Way Hypothesis Tests -- Further Reading -- Resampling -- Permutation Test -- Example: Web Stickiness -- Exhaustive and Bootstrap Permutation Tests -- Permutation Tests: The Bottom Line for Data Science -- Further Reading -- Statistical Significance and p-Values -- p-Value -- Alpha -- Type 1 and Type 2 Errors -- Data Science and p-Values -- Further Reading -- t-Tests -- Further Reading -- Multiple Testing -- Further Reading -- Degrees of Freedom -- Further Reading -- ANOVA -- F-Statistic -- Two-Way ANOVA 
650 4 |a Mathematical analysis / Statistical methods 
650 4 |a Quantitative research / Statistical methods 
650 4 |a Big data / Mathematics 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
650 0 7 |a R  |g Programm  |0 (DE-588)4705956-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Science  |0 (DE-588)1140936166  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Data Science  |0 (DE-588)1140936166  |D s 
689 0 1 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 2 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 0 3 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 4 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 5 |a R  |g Programm  |0 (DE-588)4705956-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 1 |5 DE-604 
700 1 |a Bruce, Andrew  |e Verfasser  |0 (DE-588)170744183  |4 aut 
700 1 |a Gedeck, Peter  |e Verfasser  |0 (DE-588)1231483199  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-492-07294-2 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-032212322 
966 e |u https://ebookcentral.proquest.com/lib/th-ab/detail.action?docID=6173908  |l DE-1043  |p ZDB-30-PQE  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6173908  |l DE-1050  |p ZDB-30-PQE  |q FHD01_PQE_Kauf  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6173908  |l DE-355  |p ZDB-30-PQE  |q UBR Sammelbestellung 2021  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6173908  |l DE-29  |p ZDB-30-PQE  |q UER_Einzelkauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

DE-BY-UBR_katkey 6439940
_version_ 1835101702816006145
adam_text
any_adam_object
author Bruce, Peter C. 1953-
Bruce, Andrew
Gedeck, Peter
author_GND (DE-588)1104275260
(DE-588)170744183
(DE-588)1231483199
author_facet Bruce, Peter C. 1953-
Bruce, Andrew
Gedeck, Peter
author_role aut
aut
aut
author_sort Bruce, Peter C. 1953-
author_variant p c b pc pcb
a b ab
p g pg
building Verbundindex
bvnumber BV046803637
classification_rvk SK 850
ST 250
ST 300
ST 530
collection ZDB-30-PQE
contents Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Exploratory Data Analysis -- Elements of Structured Data -- Further Reading -- Rectangular Data -- Data Frames and Indexes -- Nonrectangular Data Structures -- Further Reading -- Estimates of Location -- Mean -- Median and Robust Estimates -- Example: Location Estimates of Population and Murder Rates -- Further Reading -- Estimates of Variability -- Standard Deviation and Related Estimates
Estimates Based on Percentiles -- Example: Variability Estimates of State Population -- Further Reading -- Exploring the Data Distribution -- Percentiles and Boxplots -- Frequency Tables and Histograms -- Density Plots and Estimates -- Further Reading -- Exploring Binary and Categorical Data -- Mode -- Expected Value -- Probability -- Further Reading -- Correlation -- Scatterplots -- Further Reading -- Exploring Two or More Variables -- Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data) -- Two Categorical Variables -- Categorical and Numeric Data
Visualizing Multiple Variables -- Further Reading -- Summary -- Chapter 2. Data and Sampling Distributions -- Random Sampling and Sample Bias -- Bias -- Random Selection -- Size Versus Quality: When Does Size Matter? -- Sample Mean Versus Population Mean -- Further Reading -- Selection Bias -- Regression to the Mean -- Further Reading -- Sampling Distribution of a Statistic -- Central Limit Theorem -- Standard Error -- Further Reading -- The Bootstrap -- Resampling Versus Bootstrapping -- Further Reading -- Confidence Intervals -- Further Reading -- Normal Distribution
Standard Normal and QQ-Plots -- Long-Tailed Distributions -- Further Reading -- Student's t-Distribution -- Further Reading -- Binomial Distribution -- Further Reading -- Chi-Square Distribution -- Further Reading -- F-Distribution -- Further Reading -- Poisson and Related Distributions -- Poisson Distributions -- Exponential Distribution -- Estimating the Failure Rate -- Weibull Distribution -- Further Reading -- Summary -- Chapter 3. Statistical Experiments and Significance Testing -- A/B Testing -- Why Have a Control Group? -- Why Just A/B? Why Not C, D,...? -- Further Reading
Hypothesis Tests -- The Null Hypothesis -- Alternative Hypothesis -- One-Way Versus Two-Way Hypothesis Tests -- Further Reading -- Resampling -- Permutation Test -- Example: Web Stickiness -- Exhaustive and Bootstrap Permutation Tests -- Permutation Tests: The Bottom Line for Data Science -- Further Reading -- Statistical Significance and p-Values -- p-Value -- Alpha -- Type 1 and Type 2 Errors -- Data Science and p-Values -- Further Reading -- t-Tests -- Further Reading -- Multiple Testing -- Further Reading -- Degrees of Freedom -- Further Reading -- ANOVA -- F-Statistic -- Two-Way ANOVA
ctrlnum (OCoLC)1190674899
(DE-599)BVBBV046803637
discipline Informatik
Mathematik
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV046803637</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230801</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200713s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492072911</subfield><subfield code="c">online</subfield><subfield code="9">978-1-492-07291-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1190674899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046803637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruce, Peter C.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1104275260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical statistics for data scientists</subfield><subfield code="b">50+ essential concepts using R and Python</subfield><subfield code="c">Peter Bruce, Andrew Bruce, and Peter Gedeck</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">May 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 342 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Exploratory Data Analysis -- Elements of Structured Data -- Further Reading -- Rectangular Data -- Data Frames and Indexes -- Nonrectangular Data Structures -- Further Reading -- Estimates of Location -- Mean -- Median and Robust Estimates -- Example: Location Estimates of Population and Murder Rates -- Further Reading -- Estimates of Variability -- Standard Deviation and Related Estimates</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Estimates Based on Percentiles -- Example: Variability Estimates of State Population -- Further Reading -- Exploring the Data Distribution -- Percentiles and Boxplots -- Frequency Tables and Histograms -- Density Plots and Estimates -- Further Reading -- Exploring Binary and Categorical Data -- Mode -- Expected Value -- Probability -- Further Reading -- Correlation -- Scatterplots -- Further Reading -- Exploring Two or More Variables -- Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data) -- Two Categorical Variables -- Categorical and Numeric Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Visualizing Multiple Variables -- Further Reading -- Summary -- Chapter 2. Data and Sampling Distributions -- Random Sampling and Sample Bias -- Bias -- Random Selection -- Size Versus Quality: When Does Size Matter? -- Sample Mean Versus Population Mean -- Further Reading -- Selection Bias -- Regression to the Mean -- Further Reading -- Sampling Distribution of a Statistic -- Central Limit Theorem -- Standard Error -- Further Reading -- The Bootstrap -- Resampling Versus Bootstrapping -- Further Reading -- Confidence Intervals -- Further Reading -- Normal Distribution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Standard Normal and QQ-Plots -- Long-Tailed Distributions -- Further Reading -- Student's t-Distribution -- Further Reading -- Binomial Distribution -- Further Reading -- Chi-Square Distribution -- Further Reading -- F-Distribution -- Further Reading -- Poisson and Related Distributions -- Poisson Distributions -- Exponential Distribution -- Estimating the Failure Rate -- Weibull Distribution -- Further Reading -- Summary -- Chapter 3. Statistical Experiments and Significance Testing -- A/B Testing -- Why Have a Control Group? -- Why Just A/B? Why Not C, D,...? -- Further Reading</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Hypothesis Tests -- The Null Hypothesis -- Alternative Hypothesis -- One-Way Versus Two-Way Hypothesis Tests -- Further Reading -- Resampling -- Permutation Test -- Example: Web Stickiness -- Exhaustive and Bootstrap Permutation Tests -- Permutation Tests: The Bottom Line for Data Science -- Further Reading -- Statistical Significance and p-Values -- p-Value -- Alpha -- Type 1 and Type 2 Errors -- Data Science and p-Values -- Further Reading -- t-Tests -- Further Reading -- Multiple Testing -- Further Reading -- Degrees of Freedom -- Further Reading -- ANOVA -- F-Statistic -- Two-Way ANOVA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative research / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruce, Andrew</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170744183</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gedeck, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1231483199</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-492-07294-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032212322</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-ab/detail.action?docID=6173908</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6173908</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6173908</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2021</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6173908</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV046803637
illustrated Not Illustrated
indexdate 2025-01-30T17:03:44Z
institution BVB
isbn 9781492072911
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-032212322
oclc_num 1190674899
open_access_boolean
owner DE-1050
DE-1043
DE-355
DE-BY-UBR
DE-29
owner_facet DE-1050
DE-1043
DE-355
DE-BY-UBR
DE-29
physical 1 Online-Ressource (xvi, 342 Seiten)
psigel ZDB-30-PQE
ZDB-30-PQE FHD01_PQE_Kauf
ZDB-30-PQE UBR Sammelbestellung 2021
ZDB-30-PQE UER_Einzelkauf
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher O'Reilly
record_format marc
spellingShingle Bruce, Peter C. 1953-
Bruce, Andrew
Gedeck, Peter
Practical statistics for data scientists 50+ essential concepts using R and Python
Cover -- Copyright -- Table of Contents -- Preface -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Chapter 1. Exploratory Data Analysis -- Elements of Structured Data -- Further Reading -- Rectangular Data -- Data Frames and Indexes -- Nonrectangular Data Structures -- Further Reading -- Estimates of Location -- Mean -- Median and Robust Estimates -- Example: Location Estimates of Population and Murder Rates -- Further Reading -- Estimates of Variability -- Standard Deviation and Related Estimates
Estimates Based on Percentiles -- Example: Variability Estimates of State Population -- Further Reading -- Exploring the Data Distribution -- Percentiles and Boxplots -- Frequency Tables and Histograms -- Density Plots and Estimates -- Further Reading -- Exploring Binary and Categorical Data -- Mode -- Expected Value -- Probability -- Further Reading -- Correlation -- Scatterplots -- Further Reading -- Exploring Two or More Variables -- Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data) -- Two Categorical Variables -- Categorical and Numeric Data
Visualizing Multiple Variables -- Further Reading -- Summary -- Chapter 2. Data and Sampling Distributions -- Random Sampling and Sample Bias -- Bias -- Random Selection -- Size Versus Quality: When Does Size Matter? -- Sample Mean Versus Population Mean -- Further Reading -- Selection Bias -- Regression to the Mean -- Further Reading -- Sampling Distribution of a Statistic -- Central Limit Theorem -- Standard Error -- Further Reading -- The Bootstrap -- Resampling Versus Bootstrapping -- Further Reading -- Confidence Intervals -- Further Reading -- Normal Distribution
Standard Normal and QQ-Plots -- Long-Tailed Distributions -- Further Reading -- Student's t-Distribution -- Further Reading -- Binomial Distribution -- Further Reading -- Chi-Square Distribution -- Further Reading -- F-Distribution -- Further Reading -- Poisson and Related Distributions -- Poisson Distributions -- Exponential Distribution -- Estimating the Failure Rate -- Weibull Distribution -- Further Reading -- Summary -- Chapter 3. Statistical Experiments and Significance Testing -- A/B Testing -- Why Have a Control Group? -- Why Just A/B? Why Not C, D,...? -- Further Reading
Hypothesis Tests -- The Null Hypothesis -- Alternative Hypothesis -- One-Way Versus Two-Way Hypothesis Tests -- Further Reading -- Resampling -- Permutation Test -- Example: Web Stickiness -- Exhaustive and Bootstrap Permutation Tests -- Permutation Tests: The Bottom Line for Data Science -- Further Reading -- Statistical Significance and p-Values -- p-Value -- Alpha -- Type 1 and Type 2 Errors -- Data Science and p-Values -- Further Reading -- t-Tests -- Further Reading -- Multiple Testing -- Further Reading -- Degrees of Freedom -- Further Reading -- ANOVA -- F-Statistic -- Two-Way ANOVA
Mathematical analysis / Statistical methods
Quantitative research / Statistical methods
Big data / Mathematics
Big Data (DE-588)4802620-7 gnd
Data Mining (DE-588)4428654-5 gnd
R Programm (DE-588)4705956-4 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
Datenanalyse (DE-588)4123037-1 gnd
Data Science (DE-588)1140936166 gnd
Statistik (DE-588)4056995-0 gnd
subject_GND (DE-588)4802620-7
(DE-588)4428654-5
(DE-588)4705956-4
(DE-588)4434275-5
(DE-588)4123037-1
(DE-588)1140936166
(DE-588)4056995-0
title Practical statistics for data scientists 50+ essential concepts using R and Python
title_auth Practical statistics for data scientists 50+ essential concepts using R and Python
title_exact_search Practical statistics for data scientists 50+ essential concepts using R and Python
title_full Practical statistics for data scientists 50+ essential concepts using R and Python Peter Bruce, Andrew Bruce, and Peter Gedeck
title_fullStr Practical statistics for data scientists 50+ essential concepts using R and Python Peter Bruce, Andrew Bruce, and Peter Gedeck
title_full_unstemmed Practical statistics for data scientists 50+ essential concepts using R and Python Peter Bruce, Andrew Bruce, and Peter Gedeck
title_short Practical statistics for data scientists
title_sort practical statistics for data scientists 50 essential concepts using r and python
title_sub 50+ essential concepts using R and Python
topic Mathematical analysis / Statistical methods
Quantitative research / Statistical methods
Big data / Mathematics
Big Data (DE-588)4802620-7 gnd
Data Mining (DE-588)4428654-5 gnd
R Programm (DE-588)4705956-4 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
Datenanalyse (DE-588)4123037-1 gnd
Data Science (DE-588)1140936166 gnd
Statistik (DE-588)4056995-0 gnd
topic_facet Mathematical analysis / Statistical methods
Quantitative research / Statistical methods
Big data / Mathematics
Big Data
Data Mining
R Programm
Python Programmiersprache
Datenanalyse
Data Science
Statistik
work_keys_str_mv AT brucepeterc practicalstatisticsfordatascientists50essentialconceptsusingrandpython
AT bruceandrew practicalstatisticsfordatascientists50essentialconceptsusingrandpython
AT gedeckpeter practicalstatisticsfordatascientists50essentialconceptsusingrandpython
  • Verfügbarkeit

‌

Per Fernleihe bestellen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt