Saved in:
Other Authors: | , , , , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin ; Boston
De Gruyter
[2020]
|
Series: | De Gruyter Frontiers in Computational Intelligence
6 |
Subjects: | |
Links: | https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 https://doi.org/10.1515/9783110670707 |
Summary: | Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices |
Item Description: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jun 2020) |
Physical Description: | 1 online resource (XIII, 118 pages) |
ISBN: | 9783110670707 |
DOI: | 10.1515/9783110670707 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV046761704 | ||
003 | DE-604 | ||
005 | 20220110 | ||
007 | cr|uuu---uuuuu | ||
008 | 200615s2020 xx o|||| 00||| eng d | ||
020 | |a 9783110670707 |9 978-3-11-067070-7 | ||
024 | 7 | |a 10.1515/9783110670707 |2 doi | |
035 | |a (ZDB-23-DGG)9783110670707 | ||
035 | |a (OCoLC)1164627384 | ||
035 | |a (DE-599)BVBBV046761704 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-859 |a DE-860 |a DE-739 |a DE-1043 |a DE-858 |a DE-19 | ||
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
245 | 1 | 0 | |a Quantum Machine Learning |c Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 online resource (XIII, 118 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Frontiers in Computational Intelligence |v 6 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jun 2020) | ||
520 | |a Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices | ||
546 | |a In English | ||
650 | 4 | |a Algorithmus | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Maschinelles Lernen | |
650 | 4 | |a Quantum Computing | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 0 | 7 | |a Quanteninformation |0 (DE-588)1211521885 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantencomputer |0 (DE-588)4533372-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quanteninformatik |0 (DE-588)4705961-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Quanteninformation |0 (DE-588)1211521885 |D s |
689 | 0 | 3 | |a Quantencomputer |0 (DE-588)4533372-5 |D s |
689 | 0 | 4 | |a Quanteninformatik |0 (DE-588)4705961-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Behrman, Elizabeth |4 edt | |
700 | 1 | |a Bhattacharyya, Siddhartha |4 edt | |
700 | 1 | |a Chakraborti, Susanta |4 edt | |
700 | 1 | |a De, Sourav |4 edt | |
700 | 1 | |a Mani, Ashish |4 edt | |
700 | 1 | |a Pan, Indrajit |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783110670646 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110670707 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032171239 | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-19 |p ZDB-23-DGG |q UBM_PDA_DGG_Kauf22 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110670707 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1824416160401063936 |
---|---|
adam_text | |
any_adam_object | |
author2 | Behrman, Elizabeth Bhattacharyya, Siddhartha Chakraborti, Susanta De, Sourav Mani, Ashish Pan, Indrajit |
author2_role | edt edt edt edt edt edt |
author2_variant | e b eb s b sb s c sc s d sd a m am i p ip |
author_facet | Behrman, Elizabeth Bhattacharyya, Siddhartha Chakraborti, Susanta De, Sourav Mani, Ashish Pan, Indrajit |
building | Verbundindex |
bvnumber | BV046761704 |
classification_rvk | ST 152 ST 300 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783110670707 (OCoLC)1164627384 (DE-599)BVBBV046761704 |
discipline | Informatik |
doi_str_mv | 10.1515/9783110670707 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV046761704</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220110</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200615s2020 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110670707</subfield><subfield code="9">978-3-11-067070-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110670707</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110670707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1164627384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046761704</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Machine Learning</subfield><subfield code="c">Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (XIII, 118 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Frontiers in Computational Intelligence</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jun 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithmus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quanteninformation</subfield><subfield code="0">(DE-588)1211521885</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quanteninformatik</subfield><subfield code="0">(DE-588)4705961-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quanteninformation</subfield><subfield code="0">(DE-588)1211521885</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Quanteninformatik</subfield><subfield code="0">(DE-588)4705961-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Behrman, Elizabeth</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhattacharyya, Siddhartha</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, Susanta</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De, Sourav</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mani, Ashish</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Indrajit</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110670646</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032171239</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBM_PDA_DGG_Kauf22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110670707</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV046761704 |
illustrated | Not Illustrated |
indexdate | 2025-02-18T17:13:54Z |
institution | BVB |
isbn | 9783110670707 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032171239 |
oclc_num | 1164627384 |
open_access_boolean | |
owner | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-1046 DE-859 DE-860 DE-739 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 online resource (XIII, 118 pages) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UBM_PDA_DGG_Kauf22 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Frontiers in Computational Intelligence |
spelling | Quantum Machine Learning Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De Berlin ; Boston De Gruyter [2020] © 2020 1 online resource (XIII, 118 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter Frontiers in Computational Intelligence 6 Description based on online resource; title from PDF title page (publisher's Web site, viewed 08. Jun 2020) Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices In English Algorithmus Künstliche Intelligenz Maschinelles Lernen Quantum Computing COMPUTERS / Intelligence (AI) & Semantics bisacsh Quanteninformation (DE-588)1211521885 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Quantencomputer (DE-588)4533372-5 gnd rswk-swf Quanteninformatik (DE-588)4705961-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Maschinelles Lernen (DE-588)4193754-5 s Künstliche Intelligenz (DE-588)4033447-8 s Quanteninformation (DE-588)1211521885 s Quantencomputer (DE-588)4533372-5 s Quanteninformatik (DE-588)4705961-8 s 1\p DE-604 Behrman, Elizabeth edt Bhattacharyya, Siddhartha edt Chakraborti, Susanta edt De, Sourav edt Mani, Ashish edt Pan, Indrajit edt Erscheint auch als Druck-Ausgabe 9783110670646 https://doi.org/10.1515/9783110670707 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Quantum Machine Learning Algorithmus Künstliche Intelligenz Maschinelles Lernen Quantum Computing COMPUTERS / Intelligence (AI) & Semantics bisacsh Quanteninformation (DE-588)1211521885 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Quantencomputer (DE-588)4533372-5 gnd Quanteninformatik (DE-588)4705961-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1211521885 (DE-588)4033447-8 (DE-588)4533372-5 (DE-588)4705961-8 (DE-588)4193754-5 (DE-588)4143413-4 |
title | Quantum Machine Learning |
title_auth | Quantum Machine Learning |
title_exact_search | Quantum Machine Learning |
title_full | Quantum Machine Learning Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De |
title_fullStr | Quantum Machine Learning Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De |
title_full_unstemmed | Quantum Machine Learning Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Elizabeth Behrman, Susanta Chakraborti, Sourav De |
title_short | Quantum Machine Learning |
title_sort | quantum machine learning |
topic | Algorithmus Künstliche Intelligenz Maschinelles Lernen Quantum Computing COMPUTERS / Intelligence (AI) & Semantics bisacsh Quanteninformation (DE-588)1211521885 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Quantencomputer (DE-588)4533372-5 gnd Quanteninformatik (DE-588)4705961-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Algorithmus Künstliche Intelligenz Maschinelles Lernen Quantum Computing COMPUTERS / Intelligence (AI) & Semantics Quanteninformation Quantencomputer Quanteninformatik Aufsatzsammlung |
url | https://doi.org/10.1515/9783110670707 |
work_keys_str_mv | AT behrmanelizabeth quantummachinelearning AT bhattacharyyasiddhartha quantummachinelearning AT chakrabortisusanta quantummachinelearning AT desourav quantummachinelearning AT maniashish quantummachinelearning AT panindrajit quantummachinelearning |