Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | Buch |
Sprache: | Deutsch Englisch |
Veröffentlicht: |
Heidelberg
O'Reilly
[2020]
|
Ausgabe: | 2. Auflage |
Schlagwörter: | |
Links: | http://deposit.dnb.de/cgi-bin/dokserv?id=3d56af8b604f434489a404fd1bd0f314&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031593333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XVII, 379 Seiten Illustrationen, Diagramme 24 cm x 16.5 cm |
ISBN: | 9783960091233 3960091230 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV046214513 | ||
003 | DE-604 | ||
005 | 20221207 | ||
007 | t| | ||
008 | 191024s2020 gw a||| |||| 00||| ger d | ||
015 | |a 19,N37 |2 dnb | ||
016 | 7 | |a 1194016847 |2 DE-101 | |
020 | |a 9783960091233 |c kart. : EUR 36.90 (DE), EUR 38.00 (AT) |9 978-3-96009-123-3 | ||
020 | |a 3960091230 |9 3-96009-123-0 | ||
024 | 3 | |a 9783960091233 | |
035 | |a (OCoLC)1129393206 | ||
035 | |a (DE-599)DNB1194016847 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a ger |h eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-M347 |a DE-860 |a DE-706 |a DE-92 |a DE-634 |a DE-1050 |a DE-739 |a DE-29T |a DE-11 |a DE-523 |a DE-91G |a DE-B768 |a DE-355 |a DE-Aug4 |a DE-1049 |a DE-19 |a DE-859 |a DE-12 |a DE-83 |a DE-898 |a DE-20 |a DE-863 |a DE-861 |a DE-573 |a DE-858 |a DE-1046 | ||
084 | |a ST 510 |0 (DE-625)143676: |2 rvk | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a QP 345 |0 (DE-625)141866: |2 rvk | ||
084 | |a ST 265 |0 (DE-625)143634: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a DAT 600f |2 stub | ||
084 | |a 004 |2 sdnb | ||
084 | |a 68P01 |2 msc | ||
100 | 1 | |a Grus, Joel |e Verfasser |0 (DE-588)1098174119 |4 aut | |
240 | 1 | 0 | |0 (DE-588)1107563453 |a Data Science from scratch |
245 | 1 | 0 | |a Einführung in Data Science |b Grundprinzipien der Datenanalyse mit Python |c Joel Grus ; deutsche Übersetzung von Kristian Rother und Thomas Demmig |
250 | |a 2. Auflage | ||
264 | 1 | |a Heidelberg |b O'Reilly |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a XVII, 379 Seiten |b Illustrationen, Diagramme |c 24 cm x 16.5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Datenstruktur |0 (DE-588)4011146-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python 2.7 |0 (DE-588)7741095-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Daten |0 (DE-588)4135391-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | |a Paperback / softback | ||
653 | |a Einsteiger in die Datenanalyse mit mathematischen Grundkenntnissen und Programmiererfahrung | ||
653 | |a COM051360 | ||
653 | |a COM051360 | ||
653 | |a COM021030 | ||
653 | |a Datenanalyse | ||
653 | |a Data Science | ||
653 | |a Big Data | ||
653 | |a Python | ||
653 | |a Statistik | ||
653 | |a Data Mining | ||
653 | |a Einführung | ||
653 | |a Algorithmen | ||
653 | |a Wahrscheinlichkeit | ||
653 | |a Mathematik | ||
653 | |a MapReduce | ||
653 | |a COM051360 | ||
653 | |a 1633: Hardcover, Softcover / Informatik, EDV/Programmiersprachen | ||
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a Python 2.7 |0 (DE-588)7741095-6 |D s |
689 | 0 | 2 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 1 | 2 | |a Datenstruktur |0 (DE-588)4011146-5 |D s |
689 | 1 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Daten |0 (DE-588)4135391-2 |D s |
689 | 2 | 1 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 2 | 2 | |a Datenstruktur |0 (DE-588)4011146-5 |D s |
689 | 2 | 3 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 2 | 4 | |a Python 2.7 |0 (DE-588)7741095-6 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Daten |0 (DE-588)4135391-2 |D s |
689 | 3 | 1 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 3 | 2 | |a Datenstruktur |0 (DE-588)4011146-5 |D s |
689 | 3 | 3 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 3 | 4 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 4 | 1 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
700 | 1 | |a Rother, Kristian |d 1977- |0 (DE-588)133397068 |4 trl | |
700 | 1 | |a Demmig, Thomas |0 (DE-588)128548568 |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-96010-337-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, MOBI |z 978-3-96010-338-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-96010-336-3 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3d56af8b604f434489a404fd1bd0f314&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031593333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031593333 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102 DAT 600f 2018 A 4305(2) |
---|---|
DE-BY-TUM_katkey | 2452447 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040008869296 |
_version_ | 1821934160406642689 |
adam_text | INHALT
VORWORT
ZUR
2.
AUFLAGE
..................................................................
XI
VORWORT
ZUR
1.
AUFLAGE
..................................................................
XV
1
EINFUEHRUNG
................................................................................
1
DER
AUFSTIEG
DER
DATEN
.............................................................................
1
WAS
IST
DATA
SCIENCE?
...............................................................................
1
EIN
MOTIVIERENDES
SZENARIO:
DATASCIENCESTER
..........................................
3
FINDEN VON
SCHLUESSELPERSONEN
..........................................................
3
DATA
SCIENTISTS,
DIE
SIE
KENNEN
KOENNTEN
............................................
6
GEHAELTER
UND
ERFAHRUNG
.....................................................................
8
BEZAHLTE
NUTZERKONTEN
.......................................................................
11
INTERESSANTE
THEMEN
...........................................................................
11
WEITER
GEHT
*
S!
.....................................................................................
13
2
EIN
CRASHKURS
IN
PYTHON
.................................................................
15
ZEN
UND
PYTHON
.........................................................................................
15
PYTHON
INSTALLIEREN
.....................................................................................
16
VIRTUELLE
UMGEBUNGEN
...............................................................................
16
FORMATIEREN
DURCH
LEERZEICHEN
................................................................
18
MODULE
......................................................................................................
19
FUNKTIONEN
................................................................................................
20
STRINGS
........................................................................................................
21
EXCEPTIONS
..................................................................................................
22
LISTEN
..........................................................................................................
22
TUPEL
..........................................................................................................
23
DICTIONARIES
................................................................................................
24
DEFAULTDICT
............................................................................................
25
COUNTER
......................................................................................................
26
SETS
..............................................................................................................
27
KONTROLLFLUSS
..............................................
TI
WAHRHEITSWERTE
...........................................................................................
28
SORTIEREN
.....................................................................................................
29
LIST
COMPREHENSIONS
................................................................................
30
AUTOMATISIERTE
TESTS
UND
ASSERT
...............................................................
31
OBJEKTORIENTIERTE
PROGRAMMIERUNG
.........................................................
31
ITERABLES
UND
GENERATOREN
........................................................................
33
ZUFALL
...........................................................................................................
35
REGULAERE
AUSDRUECKE
..................................................................................
36
FUNKTIONALE
PROGRAMMIERUNG
...................................................................
37
ZIP
UND
ENTPACKEN
VON
ARGUMENTEN
.......................................................
37
ARGS
UND
KWARGS
........................................................................................
37
TYPE
ANNOTATIONS
......................................................................................
39
WIE
MAN
TYPE
ANNOTATIONS
SCHREIBT
................................................
41
WILLKOMMEN
BEI
DATASCIENCESTER!
...........................................................
43
WEITERFUEHRENDES
MATERIAL
..........................................................................
43
3
DATEN
VISUALISIEREN
.......................................................................
45
MATPLOTLIB
...................................................................................................
45
BALKENDIAGRAMME
......................................................................................
47
LINIENDIAGRAMME
......................................................................................
50
SCATTERPLOTS
.................................................................................................
51
WEITERFUEHRENDES
MATERIAL
..........................................................................
53
4
LINEARE
ALGEBRA
............................................................................
55
VEKTOREN
.....................................................................................................
55
MATRIZEN
.....................................................................................................
59
WEITERFUEHRENDES
MATERIAL
..........................................................................
62
5
STATISTIK
....................................................................................
63
EINEN
EINZELNEN
DATENSATZ
BESCHREIBEN
..................................................
63
LAGEMASSE
.............................................................................................
65
STREUUNG
...............................................................................................
67
KORRELATION
.................................................................................................
68
DAS
SIMPSON-PARADOXON
............................................................................
71
WEITERE
FALLSTRICKE
VON
KORRELATIONEN
.....................................................
72
KORRELATION
UND
KAUSALITAET
........................................................................
73
WEITERFUEHRENDES
MATERIAL
..........................................................................
74
6
WAHRSCHEINLICHKEIT
.......................................................................
75
ABHAENGIGKEIT
UND
UNABHAENGIGKEIT
...........................................................
75
BEDINGTE
WAHRSCHEINLICHKEIT
...................................................................
76
DER
SATZ
VON
BAYES.....................................................................................
78
ZUFALLSVARIABLEN
..........................................................................................
79
KONTINUIERLICHE
WAHRSCHEINLICHKEITSVERTEILUNGEN
...................................
80
DIE
NORMALVERTEILUNG
...............................................................................
81
DER
ZENTRALE
GRENZWERTSATZ
.......................................................................
84
WEITERFUEHRENDES
MATERIAL
.........................................................................
86
7
HYPOTHESEN
UND
SCHLUSSFOLGERUNGEN
................................................
87
TESTEN
STATISTISCHER
HYPOTHESEN
..............................................................
87
BEISPIEL:
MUENZWUERFE
.................................................................................
87
P-WERTE
......................................................................................................
90
KONFIDENZINTERVALLE
...................................................................................
92
P-HACKING
..................................................................................................
93
BEISPIEL:
DURCHFUEHREN
EINES
A/B-TESTS
....................................................
94
BAYESSCHE
INFERENZ
.....................................................................................
96
WEITERFUEHRENDES
MATERIAL
.........................................................................
99
8
DIE
GRADIENTENMETHODE
.................................................................
101
DIE
IDEE
HINTER
DER
GRADIENTENMETHODE
..................................................
101
ABSCHAETZEN
DES
GRADIENTEN
.......................................................................
102
DEN
GRADIENTEN
VERWENDEN
.......................................................................
105
AUSWAHL
DER
RICHTIGEN
SCHRITTWEITE
..........................................................
106
MIT
DER
GRADIENTENMETHODE
MODELLE
ANPASSEN
......................................
106
MINIBATCH
UND
STOCHASTISCHE
GRADIENTENMETHODE
.................................
108
WEITERFUEHRENDES
MATERIAL
.........................................................................
109
9
DATEN
SAMMELN
...........................................................................
111
STDIN
UND
STDOUT
.......................................................................................
111
EINLESEN
VON
DATEIEN
.................................................................................
113
GRUNDLAGEN
VON
TEXTDATEIEN
............................................................
113
DATEIEN
MIT
FELDTRENNERN
...................................................................
114
AUSLESEN
VON
WEBSEITEN
...........................................................................
116
PARSEN
VON
HTML-DOKUMENTEN
......................................................
116
BEISPIEL:
DEN
KONGRESS
IM
AUGE
BEHALTEN
........................................
118
VERWENDEN
VON
APIS
.................................................................................
121
JSON
UND
XML
.................................................................................
121
EINE
NICHT
AUTHENTIFIZIERTE
API
VERWENDEN
.......................................
122
APIS
FINDEN
..........................................................................................
123
BEISPIEL:
VERWENDEN
DER
TWITTER-APIS
......................................................
124
ZUGRIFF
AUF
DIE
APIS
ERHALTEN
..............................................................
124
WEITERFUEHRENDES
MATERIAL
.........................................................................
128
10
ARBEITEN
MIT
DATEN
.......................................................................
129
ERKUNDEN
IHRER
DATEN
................................................................................
129
ERKUNDEN
EINDIMENSIONALER
DATEN
...................................................
129
ZWEI
DIMENSIONEN
..............................................................................
132
MEHRERE
DIMENSIONEN
........................................................................
133
NAMEDTUPLES
.............................................................................................
134
DATENKLASSEN
...............................................................................................
136
BEREINIGEN
UND
UMFORMEN
........................................................................
137
MANIPULIEREN
VON
DATEN
............................................................................
139
UMSKALIEREN
...............................................................................................
141
EXKURS:
TQDM
.............................................................................................
143
HAUPTKOMPONENTENANALYSE
......................................................................
144
WEITERFUEHRENDES
MATERIAL
..........................................................................
150
11
MASCHINELLES
LERNEN
.....................................................................
151
MODELLIEREN
.................................................................................................
151
WAS
IST
MASCHINELLES
LERNEN?
...................................................................
152
OVERFITTING
UND
UNDERFITTING
......................................................................
153
GENAUIGKEIT
.................................................................................................
155
DER
KOMPROMISS
ZWISCHEN
BIAS
UND
VARIANZ
..........................................
158
EXTRAKTION
UND
AUSWAHL
VON
EIGENSCHAFTEN
............................................
159
WEITERFUEHRENDES
MATERIAL
..........................................................................
160
12
K-NAECHSTE-NACHBARN
.....................................................................
161
DAS
MODELL
.................................................................................................
161
BEISPIEL:
DER
IRIS-DATENSATZ
........................................................................
163
DER
FLUCH
DER
DIMENSIONALITAET
.................................................................
166
WEITERFUEHRENDES
MATERIAL
..........................................................................
170
13
NAIVE
BAYES-KLASSIFIKATOREN
............................................................
171
EIN
WIRKLICH
PRIMITIVER
SPAM-FILTER
.........................................................
171
EIN
ANSPRUCHSVOLLERER
SPAM-FILTER
...........................................................
172
IMPLEMENTIERUNG
........................................................................................
174
DAS
MODELL
TESTEN
......................................................................................
176
DAS
MODELL
VERWENDEN
..............................................................................
177
WEITERFUEHRENDES
MATERIAL
..........................................................................
180
14
EINFACHE
LINEARE
REGRESSION
............................................................
181
DAS
MODELL
.................................................................................................
181
AN
WENDEN
DES
GRADIENTENVERFAHRENS
.......................................................
185
MAXIMUM-LIKELIHOOD-METHODE
...............................................................
186
WEITERFUEHRENDES
MATERIAL
..........................................................................
186
15
MULTIPLE
REGRESSION
......................................................................
187
DAS
MODELL
................................................................................................
187
WEITERE
ANNAHMEN
BEI
DER
METHODE
DER
KLEINSTEN
QUADRATE
.................
188
ANPASSEN
DES
MODELLS
...............................................................................
189
INTERPRETATION
DES
MODELLS
.......................................................................
191
ANPASSUNGSGUETE
..........................................................................................
192
EXKURS:
BOOTSTRAPPING
...............................................................................
192
STANDARDFEHLER
VON
REGRESSIONSKOEFFIZIENTEN
..........................................
194
REGULARISIERUNG
..........................................................................................
196
WEITERFUEHRENDES
MATERIAL
.........................................................................
198
16
LOGISTISCHE
REGRESSION
...................................................................
199
DIE
AUFGABE
................................................................................................
199
DIE
LOGISTISCHE
FUNKTION
...........................................................................
202
ANWENDUNG
DES
MODELLS
...........................................................................
204
ANPASSUNGSGUETE
..........................................................................................
205
SUPPORT
VECTOR
MACHINES
.........................................................................
207
WEITERFUEHRENDES
MATERIAL
.........................................................................
209
17
ENTSCHEIDUNGSBAEUME
....................................................................
211
WAS
IST
EIN
ENTSCHEIDUNGSBAUM?
............................................................
211
ENTROPIE
......................................................................................................
213
DIE
ENTROPIE
EINER
PARTITION
.......................................................................
215
EINEN
ENTSCHEIDUNGSBAUM
ERZEUGEN
........................................................
216
VERALLGEMEINERUNG
DES
VERFAHRENS
..........................................................
219
RANDOM
FORESTS
..........................................................................................
221
WEITERFUEHRENDES
MATERIAL
.........................................................................
222
18
NEURONALE
NETZWERKE
....................................................................
223
PERZEPTRONS
................................................................................................
223
FEED-FORWARD-NETZE
...................................................................................
226
BACKPROPAGATION
.......................................................................................
228
BEISPIEL:
FIZZ
BUZZ
.....................................................................................
231
WEITERFUEHRENDES
MATERIAL
.........................................................................
234
19
DEEP
LEARNING
.............................................................................
235
DER
TENSOR
..................................................................................................
235
DIE
LAYER-ABSTRAHIERUNG
...........................................................................
238
DER
LINEARE
LAYER
.......................................................................................
240
NEURONALE
NETZWERKE
ALS
ABFOLGE
VON
LAYERN
........................................
242
VERLUST
UND
OPTIMIERUNG
.........................................................................
243
BEISPIEL
XOR
UEBERARBEITET
.........................................................................
246
ANDERE
AKTIVIERUNGSFUNKTIONEN
...............................................................
247
BEISPIEL:
FIZZ
BUZZ
UEBERARBEITET
...............................................................
248
SOFTMAXES
UND
KREUZ-ENTROPIE
.................................................................
249
DROPOUT
.....................................................................................................
251
BEISPIEL:
MNIST
........................................................................................
252
MODELLE
SICHERN
UND
LADEN
........................................................................
257
WEITERFUEHRENDES
MATERIAL
..........................................................................
258
20
CLUSTERING
...................................................................................
259
DIE
IDEE
.......................................................................................................
259
DAS
MODELL
.................................................................................................
260
BEISPIEL:
MEET-UPS
......................................................................................
262
DIE
AUSWAHL
VON
K
....................................................................................
264
BEISPIEL:
CLUSTERN
VON
FARBEN
...................................................................
265
AGGLOMERATIVES
HIERARCHISCHES
CLUSTERING
..............................................
267
WEITERFUEHRENDES
MATERIAL
..........................................................................
272
21
LINGUISTISCHE
DATENVERARBEITUNG
.....................................................
273
WORTWOLKEN
...............................................................................................
273
N-GRAMM-SPRACHMODELLE
..........................................................................
275
GRAMMATIKEN
.............................................................................................
278
EXKURS:
GIBBS-SAMPLING
............................................................................
280
THEMENMODELLIERUNG
................................................................................
282
WORTVEKTOREN
.............................................................................................
287
REKURRENTE
NEURONALE
NETZWERKE
.............................................................
296
BEISPIEL:
EIN
RNN
AUF
ZEICHENEBENE
VERWENDEN
....................................
299
WEITERFUEHRENDES
MATERIAL
..........................................................................
302
22
GRAPHENANALYSE
..........................................................................
303
BETWEENNESS-ZENTRALITAET
............................................................................
303
EIGENVEKTOR-ZENTRALITAET
..............................................................................
308
MATRIZENMULTIPLIKATION
.....................................................................
308
ZENTRALITAET
...........................................................................................
310
GERICHTETE
GRAPHEN
UND
PAGERANK
.........................................................
312
WEITERFUEHRENDES
MATERIAL
..........................................................................
314
23
EMPFEHLUNGSSYSTEME
...................................................................
315
MANUELLE
PFLEGE
...........................................................................................
316
EMPFEHLEN,
WAS
BELIEBT
IST
........................................................................
316
NUTZERBASIERTES
KOLLABORATIVES
FILTERN
.....................................................
317
GEGENSTANDSBASIERTES
KOLLABORATIVES
FILTERN
..............................................
320
MATRIXFAKTORISIERUNG
....................................................................................
322
WEITERFUEHRENDES
MATERIAL
............................................................................
326
24
DATENBANKEN
UND
SQL
.....................................................................
327
CREATE
TABLE
UND
INSEKT
...................................................................
327
UPDATE
.......................................................................................................
330
DELETE
.........................................................................................................
331
SELECT
.........................................................................................................
332
GROUP
BY
..................................................................................................
334
ORDER
BY
...................................................................................................
337
JOIN
.............................................................................................................
337
SUBQUERIES
.....................................................................................................
340
INDEXSTRUKTUREN
............................................................................................
340
OPTIMIERUNG
VON
ANFRAGEN
.........................................................................
341
NOSQL
...........................................................................................................
341
WEITERFUEHRENDES
MATERIAL
...........................................................................
342
25
MAPREDUCE
...................................................................................
343
BEISPIEL:
WOERTER
ZAEHLEN
................................................................................
343
WARUM
MAPREDUCE?
....................................................................................
345
MAPREDUCE
VERALLGEMEINERT
.......................................................................
346
BEISPIEL:
STATUSMELDUNGEN
ANALYSIEREN
.......................................................
347
BEISPIEL:
MATRIZENMULTIPLIKATION
.................................................................
349
EINE
RANDBEMERKUNG:
COMBINERS
.............................................................
351
WEITERFUEHRENDES
MATERIAL
...........................................................................
351
26
DATENETHIK
...................................................................................
353
WAS
IST
DATENETHIK?
......................................................................................
353
JETZT
ABER
WIRKLICH:
WAS
IST
DATENETHIK?
.....................................................
354
SOLLTE
ICH
MIR
UEBER
DATENETHIK
GEDANKEN
MACHEN?
..................................
354
SCHLECHTE
PRODUKTE
BAUEN
............................................................................
355
GENAUIGKEIT
UND
FAIRNESS
AB
WAEGEN
.............................................................
356
ZUSAMMENARBEIT
..........................................................................................
357
INTERPRETIERBARKEIT
........................................................................................
358
EMPFEHLUNGEN
..............................................................................................
358
TENDENZIOESE
DATEN
......................................................................................
359
DATENSCHUTZ
..................................................................................................
360
ZUSAMMENFASSUNG
........................................................................................
361
WEITERFUEHRENDES
MATERIAL
............................................................................
361
27
GEHET
HIN
UND
PRAKTIZIERET
DATA
SCIENCE
............................................
363
IPYTHON
.......................................................................................................
363
MATHEMATIK
.................................................................................................
364
NICHT
BEI
NULL
STARTEN
................................................................................
364
NUMPY
.................................................................................................
364
PANDAS
.................................................................................................
364
SCIKIT-LEARN
..........................................................................................
365
VISUALISIERUNG
......................................................................................
365
R
...........................................................................................................
366
DEEP
LEARNING
....................................................................................
366
FINDEN
SIE
DATEN
........................................................................................
366
DATA
SCIENCE
IN
DER
PRAXIS
..........................................................................
367
HACKER
NEWS
......................................................................................
367
FEUERWEHRAUTOS
..................................................................................
367
T-SHIRTS
.................................................................................................
368
TWEETS
ON
A
GLOBE
..............................................................................
368
UND
SIE?
...............................................................................................
369
INDEX
...............................................................................................
371
|
any_adam_object | 1 |
author | Grus, Joel |
author2 | Rother, Kristian 1977- Demmig, Thomas |
author2_role | trl trl |
author2_variant | k r kr t d td |
author_GND | (DE-588)1098174119 (DE-588)133397068 (DE-588)128548568 |
author_facet | Grus, Joel Rother, Kristian 1977- Demmig, Thomas |
author_role | aut |
author_sort | Grus, Joel |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV046214513 |
classification_rvk | ST 510 ST 250 QH 500 ST 530 SK 850 ST 601 QP 345 ST 265 ST 270 |
classification_tum | DAT 600f |
ctrlnum | (OCoLC)1129393206 (DE-599)DNB1194016847 |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
edition | 2. Auflage |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05317nam a22012498c 4500</leader><controlfield tag="001">BV046214513</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221207 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">191024s2020 gw a||| |||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,N37</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1194016847</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783960091233</subfield><subfield code="c">kart. : EUR 36.90 (DE), EUR 38.00 (AT)</subfield><subfield code="9">978-3-96009-123-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3960091230</subfield><subfield code="9">3-96009-123-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783960091233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1129393206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1194016847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="h">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-1046</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 510</subfield><subfield code="0">(DE-625)143676:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 345</subfield><subfield code="0">(DE-625)141866:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 265</subfield><subfield code="0">(DE-625)143634:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68P01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grus, Joel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1098174119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="0">(DE-588)1107563453</subfield><subfield code="a">Data Science from scratch</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einführung in Data Science</subfield><subfield code="b">Grundprinzipien der Datenanalyse mit Python</subfield><subfield code="c">Joel Grus ; deutsche Übersetzung von Kristian Rother und Thomas Demmig</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. Auflage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 379 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 16.5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python 2.7</subfield><subfield code="0">(DE-588)7741095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Paperback / softback</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Einsteiger in die Datenanalyse mit mathematischen Grundkenntnissen und Programmiererfahrung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM051360</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM051360</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM021030</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Datenanalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big Data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Einführung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithmen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wahrscheinlichkeit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MapReduce</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COM051360</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">1633: Hardcover, Softcover / Informatik, EDV/Programmiersprachen</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python 2.7</subfield><subfield code="0">(DE-588)7741095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="4"><subfield code="a">Python 2.7</subfield><subfield code="0">(DE-588)7741095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="3"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="4"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rother, Kristian</subfield><subfield code="d">1977-</subfield><subfield code="0">(DE-588)133397068</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demmig, Thomas</subfield><subfield code="0">(DE-588)128548568</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-96010-337-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, MOBI</subfield><subfield code="z">978-3-96010-338-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-96010-336-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3d56af8b604f434489a404fd1bd0f314&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031593333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031593333</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV046214513 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:46:16Z |
institution | BVB |
isbn | 9783960091233 3960091230 |
language | German English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031593333 |
oclc_num | 1129393206 |
open_access_boolean | |
owner | DE-M347 DE-860 DE-706 DE-92 DE-634 DE-1050 DE-739 DE-29T DE-11 DE-523 DE-91G DE-BY-TUM DE-B768 DE-355 DE-BY-UBR DE-Aug4 DE-1049 DE-19 DE-BY-UBM DE-859 DE-12 DE-83 DE-898 DE-BY-UBR DE-20 DE-863 DE-BY-FWS DE-861 DE-573 DE-858 DE-1046 |
owner_facet | DE-M347 DE-860 DE-706 DE-92 DE-634 DE-1050 DE-739 DE-29T DE-11 DE-523 DE-91G DE-BY-TUM DE-B768 DE-355 DE-BY-UBR DE-Aug4 DE-1049 DE-19 DE-BY-UBM DE-859 DE-12 DE-83 DE-898 DE-BY-UBR DE-20 DE-863 DE-BY-FWS DE-861 DE-573 DE-858 DE-1046 |
physical | XVII, 379 Seiten Illustrationen, Diagramme 24 cm x 16.5 cm |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly |
record_format | marc |
spellingShingle | Grus, Joel Einführung in Data Science Grundprinzipien der Datenanalyse mit Python Datenstruktur (DE-588)4011146-5 gnd Data Mining (DE-588)4428654-5 gnd Datenmanagement (DE-588)4213132-7 gnd Python 2.7 (DE-588)7741095-6 gnd Data Science (DE-588)1140936166 gnd Daten (DE-588)4135391-2 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4011146-5 (DE-588)4428654-5 (DE-588)4213132-7 (DE-588)7741095-6 (DE-588)1140936166 (DE-588)4135391-2 (DE-588)4434275-5 (DE-588)4123037-1 (DE-588)4151278-9 |
title | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python |
title_GND | (DE-588)1107563453 |
title_alt | Data Science from scratch |
title_auth | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python |
title_exact_search | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python |
title_full | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python Joel Grus ; deutsche Übersetzung von Kristian Rother und Thomas Demmig |
title_fullStr | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python Joel Grus ; deutsche Übersetzung von Kristian Rother und Thomas Demmig |
title_full_unstemmed | Einführung in Data Science Grundprinzipien der Datenanalyse mit Python Joel Grus ; deutsche Übersetzung von Kristian Rother und Thomas Demmig |
title_short | Einführung in Data Science |
title_sort | einfuhrung in data science grundprinzipien der datenanalyse mit python |
title_sub | Grundprinzipien der Datenanalyse mit Python |
topic | Datenstruktur (DE-588)4011146-5 gnd Data Mining (DE-588)4428654-5 gnd Datenmanagement (DE-588)4213132-7 gnd Python 2.7 (DE-588)7741095-6 gnd Data Science (DE-588)1140936166 gnd Daten (DE-588)4135391-2 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Datenstruktur Data Mining Datenmanagement Python 2.7 Data Science Daten Python Programmiersprache Datenanalyse Einführung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3d56af8b604f434489a404fd1bd0f314&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031593333&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grusjoel datasciencefromscratch AT rotherkristian datasciencefromscratch AT demmigthomas datasciencefromscratch AT grusjoel einfuhrungindatasciencegrundprinzipienderdatenanalysemitpython AT rotherkristian einfuhrungindatasciencegrundprinzipienderdatenanalysemitpython AT demmigthomas einfuhrungindatasciencegrundprinzipienderdatenanalysemitpython |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Mathematik & Informatik
Signatur: |
0102 DAT 600f 2018 A 4305(2) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |