Data-driven computational methods: parameter and operator estimations
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic process...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2018
|
Schlagwörter: | |
Zusammenfassung: | Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study |
Umfang: | xi, 158 pages |
ISBN: | 9781108472470 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045872649 | ||
003 | DE-604 | ||
005 | 20190618 | ||
007 | t| | ||
008 | 190513s2018 xx |||| 00||| eng d | ||
020 | |a 9781108472470 |c hardback |9 978-110847247-0 | ||
035 | |a (OCoLC)1057461766 | ||
035 | |a (DE-599)BVBBV045872649 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
082 | 0 | |a 519.2 | |
084 | |a MAT 344f |2 stub | ||
100 | 1 | |a Harlim, John |e Verfasser |0 (DE-588)1022751417 |4 aut | |
245 | 1 | 0 | |a Data-driven computational methods |b parameter and operator estimations |c John Harlim |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2018 | |
300 | |a xi, 158 pages | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study | ||
650 | 4 | |a Probabilities | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 9781108562461 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031255956 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0202 MAT 344f 2019 B 941 |
---|---|
DE-BY-TUM_katkey | 2408259 |
DE-BY-TUM_location | 02 |
DE-BY-TUM_media_number | 040008536012 |
_version_ | 1821933737254846466 |
any_adam_object | |
author | Harlim, John |
author_GND | (DE-588)1022751417 |
author_facet | Harlim, John |
author_role | aut |
author_sort | Harlim, John |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV045872649 |
classification_tum | MAT 344f |
ctrlnum | (OCoLC)1057461766 (DE-599)BVBBV045872649 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02353nam a2200385zc 4500</leader><controlfield tag="001">BV045872649</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190618 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">190513s2018 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108472470</subfield><subfield code="c">hardback</subfield><subfield code="9">978-110847247-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1057461766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045872649</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harlim, John</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1022751417</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven computational methods</subfield><subfield code="b">parameter and operator estimations</subfield><subfield code="c">John Harlim</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 158 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">9781108562461</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031255956</subfield></datafield></record></collection> |
id | DE-604.BV045872649 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:37:12Z |
institution | BVB |
isbn | 9781108472470 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031255956 |
oclc_num | 1057461766 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xi, 158 pages |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Harlim, John Data-driven computational methods parameter and operator estimations Probabilities Mathematical statistics Dynamisches System (DE-588)4013396-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4057633-4 |
title | Data-driven computational methods parameter and operator estimations |
title_auth | Data-driven computational methods parameter and operator estimations |
title_exact_search | Data-driven computational methods parameter and operator estimations |
title_full | Data-driven computational methods parameter and operator estimations John Harlim |
title_fullStr | Data-driven computational methods parameter and operator estimations John Harlim |
title_full_unstemmed | Data-driven computational methods parameter and operator estimations John Harlim |
title_short | Data-driven computational methods |
title_sort | data driven computational methods parameter and operator estimations |
title_sub | parameter and operator estimations |
topic | Probabilities Mathematical statistics Dynamisches System (DE-588)4013396-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
topic_facet | Probabilities Mathematical statistics Dynamisches System Stochastisches Modell |
work_keys_str_mv | AT harlimjohn datadrivencomputationalmethodsparameterandoperatorestimations |
Paper/Kapitel scannen lassen
Teilbibliothek Physik
Signatur: |
0202 MAT 344f 2019 B 941 Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |