Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham ; Mumbai
Packt
July 2018
|
Links: | https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 |
Abstract: | Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Basic concepts and terminologies in NLP -- Text corpus or corpora -- Paragraph -- Sentences -- Phrases and words -- N-grams -- Bag-of-words -- Applications of NLP -- Analyzing sentiment -- Recognizing named entities -- Linking entities -- Translating text -- Natural Language Inference -- Semantic Role Labeling -- Relation extraction -- SQL query generation, or semantic parsing -- Machine Comprehension -- Textual Entailment -- Coreference resolution -- Searching -- Question answering and chatbots -- Converting text-to-voice -- Converting voice-to-text -- Speaker identification -- Spoken dialog systems -- Other applications -- Summary -- Chapter 2: Text Classification and POS Tagging Using NLTK -- Installing NLTK and its modules -- Text preprocessing and exploratory analysis -- Tokenization -- Stemming -- Removing stop words -- Exploratory analysis of text -- POS tagging -- What is POS tagging? -- Applications of POS tagging -- Training a POS tagger -- Training a sentiment classifier for movie reviews -- Training a bag-of-words classifier -- Summary -- Chapter 3: Deep Learning and TensorFlow -- Deep learning -- Perceptron -- Activation functions -- Sigmoid -- Hyperbolic tangent -- Rectified linear unit -- Neural network -- One-hot encoding -- Softmax -- Cross-entropy -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Regularization techniques -- Dropout -- Batch normalization -- L1 and L2 normalization -- Convolutional Neural Network -- Kernel -- Max pooling -- Recurrent neural network -- Long-Short Term Memory -- TensorFlow -- General Purpose - Graphics Processing Unit -- CUDA -- cuDNN -- Installation -- Hello world! -- Adding two numbers TensorBoard -- The Keras library -- Summary -- Chapter 4: Semantic Embedding Using Shallow Models -- Word vectors -- The classical approach -- Word2vec -- The CBOW model -- The skip-gram model -- A comparison of skip-gram and CBOW model architectures -- Building a skip-gram model -- Visualization of word embeddings -- From word to document embeddings -- Sentence2vec -- Doc2vec -- Visualization of document embeddings -- Summary -- Chapter 5: Text Classification Using LSTM -- Data for text classification -- Topic modeling -- Topic modeling versus text classification -- Deep learning meta architecture for text classification -- Embedding layer -- Deep representation -- Fully connected part -- Identifying spam in YouTube video comments using RNNs -- Classifying news articles by topic using a CNN -- Transfer learning using GloVe embeddings -- Multi-label classification -- Binary relevance -- Deep learning for multi-label classification -- Attention networks for document classification -- Summary -- Chapter 6: Searching and DeDuplicating Using CNNs -- Data -- Data description -- Training the model -- Encoding the text -- Modeling with CNN -- Training -- Inference -- Summary -- Chapter 7: Named Entity Recognition Using Character LSTM -- NER with deep learning -- Data -- Model -- Word embeddings -- Walking through the code -- Input -- Word embedding -- The effects of different pretrained word embeddings -- Neural network architecture -- Decoding predictions -- The training step -- Scope for improvement -- Summary -- Chapter 8: Text Generation and Summarization Using GRUs -- Generating text using RNNs -- Generating Linux kernel code with a GRU -- Text summarization -- Extractive summarization -- Summarization using gensim -- Abstractive summarization -- Encoder-decoder architecture -- Encoder -- Decoder -- News summarization using GRU -- Data preparation Encoder network -- Decoder network -- Sequence to sequence -- Building the graph -- Training -- Inference -- TensorBoard visualization -- State-of-the-art abstractive text summarization -- Summary -- Chapter 9: Question-Answering and Chatbots Using Memory Networks -- The Question-Answering task -- Question-Answering datasets -- Memory networks for Question-Answering -- Memory network pipeline overview -- Writing a memory network in TensorFlow -- Class constructor -- Input module -- Question module -- Memory module -- Output module -- Putting it together -- Extending memory networks for dialog modeling -- Dialog datasets -- The bAbI dialog dataset -- Raw data format -- Writing a chatbot in TensorFlow -- Loading dialog datasets in the QA format -- Vectorizing the data -- Wrapping the memory network model in a chatbot class -- Class constructor -- Building a vocabulary for word embedding lookup -- Training the chatbot model -- Evaluating the chatbot on the testing set -- Interacting with the chatbot -- Putting it all together -- Example of an interactive conversation -- Literature on and related to memory networks -- Summary -- Chapter 10: Machine Translation Using the Attention-Based Model -- Overview of machine translation -- Statistical machine translation -- English to French using NLTK SMT models -- Neural machine translation -- Encoder-decoder network -- Encoder-decoder with attention -- NMT for French to English using attention -- Data preparation -- Encoder network -- Decoder network -- Sequence-to-sequence model -- Building the graph -- Training -- Inference -- TensorBoard visualization -- Summary -- Chapter 11: Speech Recognition Using DeepSpeech -- Overview of speech recognition -- Building an RNN model for speech recognition -- Audio signal representation -- LSTM model for spoken digit recognition -- TensorBoard visualization |
Umfang: | 1 Online-Ressource (vi, 291 Seiten) Illustrationen |
ISBN: | 9781789135916 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045421065 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 190123s2018 xx a||| o|||| 00||| eng d | ||
020 | |a 9781789135916 |c Online |9 978-1-78913-591-6 | ||
035 | |a (OCoLC)1083296013 | ||
035 | |a (DE-599)GBV1027970265 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
100 | 1 | |a Arumugam, Rajesh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hands-on natural language processing with Python |b a practical guide to applying deep learning architectures to your NLP applications |c Rajesh Arumugam, Rajalingappaa Shanmugamani |
264 | 1 | |a Birmingham ; Mumbai |b Packt |c July 2018 | |
300 | |a 1 Online-Ressource (vi, 291 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Basic concepts and terminologies in NLP -- Text corpus or corpora -- Paragraph -- Sentences -- Phrases and words -- N-grams -- Bag-of-words -- Applications of NLP -- Analyzing sentiment -- Recognizing named entities -- Linking entities -- Translating text -- Natural Language Inference -- Semantic Role Labeling -- Relation extraction -- SQL query generation, or semantic parsing -- Machine Comprehension -- Textual Entailment -- Coreference resolution -- Searching -- Question answering and chatbots -- Converting text-to-voice -- Converting voice-to-text -- Speaker identification -- Spoken dialog systems -- Other applications -- Summary -- Chapter 2: Text Classification and POS Tagging Using NLTK -- Installing NLTK and its modules -- Text preprocessing and exploratory analysis -- Tokenization -- Stemming -- Removing stop words -- Exploratory analysis of text -- POS tagging -- What is POS tagging? -- Applications of POS tagging -- Training a POS tagger -- Training a sentiment classifier for movie reviews -- Training a bag-of-words classifier -- Summary -- Chapter 3: Deep Learning and TensorFlow -- Deep learning -- Perceptron -- Activation functions -- Sigmoid -- Hyperbolic tangent -- Rectified linear unit -- Neural network -- One-hot encoding -- Softmax -- Cross-entropy -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Regularization techniques -- Dropout -- Batch normalization -- L1 and L2 normalization -- Convolutional Neural Network -- Kernel -- Max pooling -- Recurrent neural network -- Long-Short Term Memory -- TensorFlow -- General Purpose - Graphics Processing Unit -- CUDA -- cuDNN -- Installation -- Hello world! -- Adding two numbers | |
520 | 3 | |a TensorBoard -- The Keras library -- Summary -- Chapter 4: Semantic Embedding Using Shallow Models -- Word vectors -- The classical approach -- Word2vec -- The CBOW model -- The skip-gram model -- A comparison of skip-gram and CBOW model architectures -- Building a skip-gram model -- Visualization of word embeddings -- From word to document embeddings -- Sentence2vec -- Doc2vec -- Visualization of document embeddings -- Summary -- Chapter 5: Text Classification Using LSTM -- Data for text classification -- Topic modeling -- Topic modeling versus text classification -- Deep learning meta architecture for text classification -- Embedding layer -- Deep representation -- Fully connected part -- Identifying spam in YouTube video comments using RNNs -- Classifying news articles by topic using a CNN -- Transfer learning using GloVe embeddings -- Multi-label classification -- Binary relevance -- Deep learning for multi-label classification -- Attention networks for document classification -- Summary -- Chapter 6: Searching and DeDuplicating Using CNNs -- Data -- Data description -- Training the model -- Encoding the text -- Modeling with CNN -- Training -- Inference -- Summary -- Chapter 7: Named Entity Recognition Using Character LSTM -- NER with deep learning -- Data -- Model -- Word embeddings -- Walking through the code -- Input -- Word embedding -- The effects of different pretrained word embeddings -- Neural network architecture -- Decoding predictions -- The training step -- Scope for improvement -- Summary -- Chapter 8: Text Generation and Summarization Using GRUs -- Generating text using RNNs -- Generating Linux kernel code with a GRU -- Text summarization -- Extractive summarization -- Summarization using gensim -- Abstractive summarization -- Encoder-decoder architecture -- Encoder -- Decoder -- News summarization using GRU -- Data preparation | |
520 | 3 | |a Encoder network -- Decoder network -- Sequence to sequence -- Building the graph -- Training -- Inference -- TensorBoard visualization -- State-of-the-art abstractive text summarization -- Summary -- Chapter 9: Question-Answering and Chatbots Using Memory Networks -- The Question-Answering task -- Question-Answering datasets -- Memory networks for Question-Answering -- Memory network pipeline overview -- Writing a memory network in TensorFlow -- Class constructor -- Input module -- Question module -- Memory module -- Output module -- Putting it together -- Extending memory networks for dialog modeling -- Dialog datasets -- The bAbI dialog dataset -- Raw data format -- Writing a chatbot in TensorFlow -- Loading dialog datasets in the QA format -- Vectorizing the data -- Wrapping the memory network model in a chatbot class -- Class constructor -- Building a vocabulary for word embedding lookup -- Training the chatbot model -- Evaluating the chatbot on the testing set -- Interacting with the chatbot -- Putting it all together -- Example of an interactive conversation -- Literature on and related to memory networks -- Summary -- Chapter 10: Machine Translation Using the Attention-Based Model -- Overview of machine translation -- Statistical machine translation -- English to French using NLTK SMT models -- Neural machine translation -- Encoder-decoder network -- Encoder-decoder with attention -- NMT for French to English using attention -- Data preparation -- Encoder network -- Decoder network -- Sequence-to-sequence model -- Building the graph -- Training -- Inference -- TensorBoard visualization -- Summary -- Chapter 11: Speech Recognition Using DeepSpeech -- Overview of speech recognition -- Building an RNN model for speech recognition -- Audio signal representation -- LSTM model for spoken digit recognition -- TensorBoard visualization | |
700 | 1 | |a Shanmugamani, Rajalingappaa |4 aut | |
776 | 0 | 8 | |i Print version |a Arumugam, Rajesh |t Hands-On Natural Language Processing with Python : A Practical Guide to Applying Deep Learning Architectures to Your NLP Applications |d Birmingham : Packt Publishing Ltd,c2018 |z 9781789139495 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-5-WPSE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030806950 | |
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 |l DE-706 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1818984925732274176 |
---|---|
any_adam_object | |
author | Arumugam, Rajesh Shanmugamani, Rajalingappaa |
author_facet | Arumugam, Rajesh Shanmugamani, Rajalingappaa |
author_role | aut aut |
author_sort | Arumugam, Rajesh |
author_variant | r a ra r s rs |
building | Verbundindex |
bvnumber | BV045421065 |
collection | ZDB-30-PQE ZDB-5-WPSE |
ctrlnum | (OCoLC)1083296013 (DE-599)GBV1027970265 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07172nam a2200361 c 4500</leader><controlfield tag="001">BV045421065</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">190123s2018 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781789135916</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-78913-591-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1083296013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV1027970265</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arumugam, Rajesh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-on natural language processing with Python</subfield><subfield code="b">a practical guide to applying deep learning architectures to your NLP applications</subfield><subfield code="c">Rajesh Arumugam, Rajalingappaa Shanmugamani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">July 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 291 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Basic concepts and terminologies in NLP -- Text corpus or corpora -- Paragraph -- Sentences -- Phrases and words -- N-grams -- Bag-of-words -- Applications of NLP -- Analyzing sentiment -- Recognizing named entities -- Linking entities -- Translating text -- Natural Language Inference -- Semantic Role Labeling -- Relation extraction -- SQL query generation, or semantic parsing -- Machine Comprehension -- Textual Entailment -- Coreference resolution -- Searching -- Question answering and chatbots -- Converting text-to-voice -- Converting voice-to-text -- Speaker identification -- Spoken dialog systems -- Other applications -- Summary -- Chapter 2: Text Classification and POS Tagging Using NLTK -- Installing NLTK and its modules -- Text preprocessing and exploratory analysis -- Tokenization -- Stemming -- Removing stop words -- Exploratory analysis of text -- POS tagging -- What is POS tagging? -- Applications of POS tagging -- Training a POS tagger -- Training a sentiment classifier for movie reviews -- Training a bag-of-words classifier -- Summary -- Chapter 3: Deep Learning and TensorFlow -- Deep learning -- Perceptron -- Activation functions -- Sigmoid -- Hyperbolic tangent -- Rectified linear unit -- Neural network -- One-hot encoding -- Softmax -- Cross-entropy -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Regularization techniques -- Dropout -- Batch normalization -- L1 and L2 normalization -- Convolutional Neural Network -- Kernel -- Max pooling -- Recurrent neural network -- Long-Short Term Memory -- TensorFlow -- General Purpose - Graphics Processing Unit -- CUDA -- cuDNN -- Installation -- Hello world! -- Adding two numbers</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">TensorBoard -- The Keras library -- Summary -- Chapter 4: Semantic Embedding Using Shallow Models -- Word vectors -- The classical approach -- Word2vec -- The CBOW model -- The skip-gram model -- A comparison of skip-gram and CBOW model architectures -- Building a skip-gram model -- Visualization of word embeddings -- From word to document embeddings -- Sentence2vec -- Doc2vec -- Visualization of document embeddings -- Summary -- Chapter 5: Text Classification Using LSTM -- Data for text classification -- Topic modeling -- Topic modeling versus text classification -- Deep learning meta architecture for text classification -- Embedding layer -- Deep representation -- Fully connected part -- Identifying spam in YouTube video comments using RNNs -- Classifying news articles by topic using a CNN -- Transfer learning using GloVe embeddings -- Multi-label classification -- Binary relevance -- Deep learning for multi-label classification -- Attention networks for document classification -- Summary -- Chapter 6: Searching and DeDuplicating Using CNNs -- Data -- Data description -- Training the model -- Encoding the text -- Modeling with CNN -- Training -- Inference -- Summary -- Chapter 7: Named Entity Recognition Using Character LSTM -- NER with deep learning -- Data -- Model -- Word embeddings -- Walking through the code -- Input -- Word embedding -- The effects of different pretrained word embeddings -- Neural network architecture -- Decoding predictions -- The training step -- Scope for improvement -- Summary -- Chapter 8: Text Generation and Summarization Using GRUs -- Generating text using RNNs -- Generating Linux kernel code with a GRU -- Text summarization -- Extractive summarization -- Summarization using gensim -- Abstractive summarization -- Encoder-decoder architecture -- Encoder -- Decoder -- News summarization using GRU -- Data preparation</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Encoder network -- Decoder network -- Sequence to sequence -- Building the graph -- Training -- Inference -- TensorBoard visualization -- State-of-the-art abstractive text summarization -- Summary -- Chapter 9: Question-Answering and Chatbots Using Memory Networks -- The Question-Answering task -- Question-Answering datasets -- Memory networks for Question-Answering -- Memory network pipeline overview -- Writing a memory network in TensorFlow -- Class constructor -- Input module -- Question module -- Memory module -- Output module -- Putting it together -- Extending memory networks for dialog modeling -- Dialog datasets -- The bAbI dialog dataset -- Raw data format -- Writing a chatbot in TensorFlow -- Loading dialog datasets in the QA format -- Vectorizing the data -- Wrapping the memory network model in a chatbot class -- Class constructor -- Building a vocabulary for word embedding lookup -- Training the chatbot model -- Evaluating the chatbot on the testing set -- Interacting with the chatbot -- Putting it all together -- Example of an interactive conversation -- Literature on and related to memory networks -- Summary -- Chapter 10: Machine Translation Using the Attention-Based Model -- Overview of machine translation -- Statistical machine translation -- English to French using NLTK SMT models -- Neural machine translation -- Encoder-decoder network -- Encoder-decoder with attention -- NMT for French to English using attention -- Data preparation -- Encoder network -- Decoder network -- Sequence-to-sequence model -- Building the graph -- Training -- Inference -- TensorBoard visualization -- Summary -- Chapter 11: Speech Recognition Using DeepSpeech -- Overview of speech recognition -- Building an RNN model for speech recognition -- Audio signal representation -- LSTM model for spoken digit recognition -- TensorBoard visualization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanmugamani, Rajalingappaa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version</subfield><subfield code="a">Arumugam, Rajesh</subfield><subfield code="t">Hands-On Natural Language Processing with Python : A Practical Guide to Applying Deep Learning Architectures to Your NLP Applications</subfield><subfield code="d">Birmingham : Packt Publishing Ltd,c2018</subfield><subfield code="z">9781789139495</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030806950</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045421065 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:26:45Z |
institution | BVB |
isbn | 9781789135916 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030806950 |
oclc_num | 1083296013 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (vi, 291 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-5-WPSE |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Packt |
record_format | marc |
spelling | Arumugam, Rajesh Verfasser aut Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications Rajesh Arumugam, Rajalingappaa Shanmugamani Birmingham ; Mumbai Packt July 2018 1 Online-Ressource (vi, 291 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright and Credits -- Packt Upsell -- Foreword -- Contributors -- Table of Contents -- Preface -- Chapter 1: Getting Started -- Basic concepts and terminologies in NLP -- Text corpus or corpora -- Paragraph -- Sentences -- Phrases and words -- N-grams -- Bag-of-words -- Applications of NLP -- Analyzing sentiment -- Recognizing named entities -- Linking entities -- Translating text -- Natural Language Inference -- Semantic Role Labeling -- Relation extraction -- SQL query generation, or semantic parsing -- Machine Comprehension -- Textual Entailment -- Coreference resolution -- Searching -- Question answering and chatbots -- Converting text-to-voice -- Converting voice-to-text -- Speaker identification -- Spoken dialog systems -- Other applications -- Summary -- Chapter 2: Text Classification and POS Tagging Using NLTK -- Installing NLTK and its modules -- Text preprocessing and exploratory analysis -- Tokenization -- Stemming -- Removing stop words -- Exploratory analysis of text -- POS tagging -- What is POS tagging? -- Applications of POS tagging -- Training a POS tagger -- Training a sentiment classifier for movie reviews -- Training a bag-of-words classifier -- Summary -- Chapter 3: Deep Learning and TensorFlow -- Deep learning -- Perceptron -- Activation functions -- Sigmoid -- Hyperbolic tangent -- Rectified linear unit -- Neural network -- One-hot encoding -- Softmax -- Cross-entropy -- Training neural networks -- Backpropagation -- Gradient descent -- Stochastic gradient descent -- Regularization techniques -- Dropout -- Batch normalization -- L1 and L2 normalization -- Convolutional Neural Network -- Kernel -- Max pooling -- Recurrent neural network -- Long-Short Term Memory -- TensorFlow -- General Purpose - Graphics Processing Unit -- CUDA -- cuDNN -- Installation -- Hello world! -- Adding two numbers TensorBoard -- The Keras library -- Summary -- Chapter 4: Semantic Embedding Using Shallow Models -- Word vectors -- The classical approach -- Word2vec -- The CBOW model -- The skip-gram model -- A comparison of skip-gram and CBOW model architectures -- Building a skip-gram model -- Visualization of word embeddings -- From word to document embeddings -- Sentence2vec -- Doc2vec -- Visualization of document embeddings -- Summary -- Chapter 5: Text Classification Using LSTM -- Data for text classification -- Topic modeling -- Topic modeling versus text classification -- Deep learning meta architecture for text classification -- Embedding layer -- Deep representation -- Fully connected part -- Identifying spam in YouTube video comments using RNNs -- Classifying news articles by topic using a CNN -- Transfer learning using GloVe embeddings -- Multi-label classification -- Binary relevance -- Deep learning for multi-label classification -- Attention networks for document classification -- Summary -- Chapter 6: Searching and DeDuplicating Using CNNs -- Data -- Data description -- Training the model -- Encoding the text -- Modeling with CNN -- Training -- Inference -- Summary -- Chapter 7: Named Entity Recognition Using Character LSTM -- NER with deep learning -- Data -- Model -- Word embeddings -- Walking through the code -- Input -- Word embedding -- The effects of different pretrained word embeddings -- Neural network architecture -- Decoding predictions -- The training step -- Scope for improvement -- Summary -- Chapter 8: Text Generation and Summarization Using GRUs -- Generating text using RNNs -- Generating Linux kernel code with a GRU -- Text summarization -- Extractive summarization -- Summarization using gensim -- Abstractive summarization -- Encoder-decoder architecture -- Encoder -- Decoder -- News summarization using GRU -- Data preparation Encoder network -- Decoder network -- Sequence to sequence -- Building the graph -- Training -- Inference -- TensorBoard visualization -- State-of-the-art abstractive text summarization -- Summary -- Chapter 9: Question-Answering and Chatbots Using Memory Networks -- The Question-Answering task -- Question-Answering datasets -- Memory networks for Question-Answering -- Memory network pipeline overview -- Writing a memory network in TensorFlow -- Class constructor -- Input module -- Question module -- Memory module -- Output module -- Putting it together -- Extending memory networks for dialog modeling -- Dialog datasets -- The bAbI dialog dataset -- Raw data format -- Writing a chatbot in TensorFlow -- Loading dialog datasets in the QA format -- Vectorizing the data -- Wrapping the memory network model in a chatbot class -- Class constructor -- Building a vocabulary for word embedding lookup -- Training the chatbot model -- Evaluating the chatbot on the testing set -- Interacting with the chatbot -- Putting it all together -- Example of an interactive conversation -- Literature on and related to memory networks -- Summary -- Chapter 10: Machine Translation Using the Attention-Based Model -- Overview of machine translation -- Statistical machine translation -- English to French using NLTK SMT models -- Neural machine translation -- Encoder-decoder network -- Encoder-decoder with attention -- NMT for French to English using attention -- Data preparation -- Encoder network -- Decoder network -- Sequence-to-sequence model -- Building the graph -- Training -- Inference -- TensorBoard visualization -- Summary -- Chapter 11: Speech Recognition Using DeepSpeech -- Overview of speech recognition -- Building an RNN model for speech recognition -- Audio signal representation -- LSTM model for spoken digit recognition -- TensorBoard visualization Shanmugamani, Rajalingappaa aut Print version Arumugam, Rajesh Hands-On Natural Language Processing with Python : A Practical Guide to Applying Deep Learning Architectures to Your NLP Applications Birmingham : Packt Publishing Ltd,c2018 9781789139495 https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 Aggregator URL des Erstveröffentlichers Volltext |
spellingShingle | Arumugam, Rajesh Shanmugamani, Rajalingappaa Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications |
title | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications |
title_auth | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications |
title_exact_search | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications |
title_full | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications Rajesh Arumugam, Rajalingappaa Shanmugamani |
title_fullStr | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications Rajesh Arumugam, Rajalingappaa Shanmugamani |
title_full_unstemmed | Hands-on natural language processing with Python a practical guide to applying deep learning architectures to your NLP applications Rajesh Arumugam, Rajalingappaa Shanmugamani |
title_short | Hands-on natural language processing with Python |
title_sort | hands on natural language processing with python a practical guide to applying deep learning architectures to your nlp applications |
title_sub | a practical guide to applying deep learning architectures to your NLP applications |
url | https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=5456142 |
work_keys_str_mv | AT arumugamrajesh handsonnaturallanguageprocessingwithpythonapracticalguidetoapplyingdeeplearningarchitecturestoyournlpapplications AT shanmugamanirajalingappaa handsonnaturallanguageprocessingwithpythonapracticalguidetoapplyingdeeplearningarchitecturestoyournlpapplications |