Conditional Monte Carlo: Gradient Estimation and Optimization Applications
Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing...
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Boston, MA
Springer US
1997
|
Series: | The Springer International Series in Engineering and Computer Science, Discrete Event Dynamic Systems
392 |
Subjects: | |
Links: | https://doi.org/10.1007/978-1-4615-6293-1 https://doi.org/10.1007/978-1-4615-6293-1 |
Summary: | Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry |
Physical Description: | 1 Online-Ressource (XV, 399 p) |
ISBN: | 9781461562931 |
DOI: | 10.1007/978-1-4615-6293-1 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV045187180 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1997 xx o|||| 00||| eng d | ||
020 | |a 9781461562931 |9 978-1-4615-6293-1 | ||
024 | 7 | |a 10.1007/978-1-4615-6293-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-6293-1 | ||
035 | |a (OCoLC)1184376849 | ||
035 | |a (DE-599)BVBBV045187180 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 004.0151 |2 23 | |
100 | 1 | |a Fu, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conditional Monte Carlo |b Gradient Estimation and Optimization Applications |c by Michael Fu, Jian-Qiang Hu |
264 | 1 | |a Boston, MA |b Springer US |c 1997 | |
300 | |a 1 Online-Ressource (XV, 399 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science, Discrete Event Dynamic Systems |v 392 | |
520 | |a Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry | ||
650 | 4 | |a Computer Science | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a System theory | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Gradientenverfahren |0 (DE-588)4157995-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | 1 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | 2 | |a Gradientenverfahren |0 (DE-588)4157995-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hu, Jian-Qiang |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461378891 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-6293-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030576358 | |
966 | e | |u https://doi.org/10.1007/978-1-4615-6293-1 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Record in the Search Index
_version_ | 1818984514270003200 |
---|---|
any_adam_object | |
author | Fu, Michael Hu, Jian-Qiang |
author_facet | Fu, Michael Hu, Jian-Qiang |
author_role | aut aut |
author_sort | Fu, Michael |
author_variant | m f mf j q h jqh |
building | Verbundindex |
bvnumber | BV045187180 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-6293-1 (OCoLC)1184376849 (DE-599)BVBBV045187180 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4615-6293-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03814nam a2200601zcb4500</leader><controlfield tag="001">BV045187180</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461562931</subfield><subfield code="9">978-1-4615-6293-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-6293-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-6293-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184376849</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187180</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditional Monte Carlo</subfield><subfield code="b">Gradient Estimation and Optimization Applications</subfield><subfield code="c">by Michael Fu, Jian-Qiang Hu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 399 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science, Discrete Event Dynamic Systems</subfield><subfield code="v">392</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gradientenverfahren</subfield><subfield code="0">(DE-588)4157995-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gradientenverfahren</subfield><subfield code="0">(DE-588)4157995-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jian-Qiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461378891</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-6293-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576358</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-6293-1</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045187180 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:20:13Z |
institution | BVB |
isbn | 9781461562931 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576358 |
oclc_num | 1184376849 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XV, 399 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science, Discrete Event Dynamic Systems |
spelling | Fu, Michael Verfasser aut Conditional Monte Carlo Gradient Estimation and Optimization Applications by Michael Fu, Jian-Qiang Hu Boston, MA Springer US 1997 1 Online-Ressource (XV, 399 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science, Discrete Event Dynamic Systems 392 Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry Computer Science Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Computer science Computer science / Mathematics System theory Calculus of variations Probabilities Gradientenverfahren (DE-588)4157995-1 gnd rswk-swf Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf Störungstheorie (DE-588)4128420-3 gnd rswk-swf Monte-Carlo-Simulation (DE-588)4240945-7 s Störungstheorie (DE-588)4128420-3 s Gradientenverfahren (DE-588)4157995-1 s 1\p DE-604 Hu, Jian-Qiang aut Erscheint auch als Druck-Ausgabe 9781461378891 https://doi.org/10.1007/978-1-4615-6293-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fu, Michael Hu, Jian-Qiang Conditional Monte Carlo Gradient Estimation and Optimization Applications Computer Science Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Computer science Computer science / Mathematics System theory Calculus of variations Probabilities Gradientenverfahren (DE-588)4157995-1 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Störungstheorie (DE-588)4128420-3 gnd |
subject_GND | (DE-588)4157995-1 (DE-588)4240945-7 (DE-588)4128420-3 |
title | Conditional Monte Carlo Gradient Estimation and Optimization Applications |
title_auth | Conditional Monte Carlo Gradient Estimation and Optimization Applications |
title_exact_search | Conditional Monte Carlo Gradient Estimation and Optimization Applications |
title_full | Conditional Monte Carlo Gradient Estimation and Optimization Applications by Michael Fu, Jian-Qiang Hu |
title_fullStr | Conditional Monte Carlo Gradient Estimation and Optimization Applications by Michael Fu, Jian-Qiang Hu |
title_full_unstemmed | Conditional Monte Carlo Gradient Estimation and Optimization Applications by Michael Fu, Jian-Qiang Hu |
title_short | Conditional Monte Carlo |
title_sort | conditional monte carlo gradient estimation and optimization applications |
title_sub | Gradient Estimation and Optimization Applications |
topic | Computer Science Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Computer science Computer science / Mathematics System theory Calculus of variations Probabilities Gradientenverfahren (DE-588)4157995-1 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Störungstheorie (DE-588)4128420-3 gnd |
topic_facet | Computer Science Discrete Mathematics in Computer Science Probability Theory and Stochastic Processes Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Computer science Computer science / Mathematics System theory Calculus of variations Probabilities Gradientenverfahren Monte-Carlo-Simulation Störungstheorie |
url | https://doi.org/10.1007/978-1-4615-6293-1 |
work_keys_str_mv | AT fumichael conditionalmontecarlogradientestimationandoptimizationapplications AT hujianqiang conditionalmontecarlogradientestimationandoptimizationapplications |