Machine vision algorithms and applications:
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2018]
|
Ausgabe: | 2nd, completely revised and enlarged edition |
Schlagwörter: | |
Links: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | xxii, 494 Seiten Illustrationen, Diagramme |
ISBN: | 9783527413652 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV044670270 | ||
003 | DE-604 | ||
005 | 20200701 | ||
007 | t| | ||
008 | 171206s2018 gw a||| |||| 00||| eng d | ||
015 | |a 17,N41 |2 dnb | ||
016 | 7 | |a 1140659693 |2 DE-101 | |
020 | |a 9783527413652 |c pbk |9 978-3-527-41365-2 | ||
024 | 3 | |a 9783527413652 | |
028 | 5 | 2 | |a Bestellnummer: 1141365 000 |
035 | |a (OCoLC)1022089388 | ||
035 | |a (DE-599)DNB1140659693 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-M347 |a DE-1050 |a DE-11 |a DE-355 |a DE-29T |a DE-634 |a DE-91G |a DE-573 |a DE-703 |a DE-898 |a DE-861 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a DAT 760f |2 stub | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Steger, Carsten |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine vision algorithms and applications |c Carsten Steger, Markus Ulrich, and Christian Wiedemann |
250 | |a 2nd, completely revised and enlarged edition | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c [2018] | |
300 | |a xxii, 494 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
653 | |a Algorithmen u. Datenstrukturen | ||
653 | |a Algorithms & Data Structures | ||
653 | |a Bildgebende Systeme u. Verfahren | ||
653 | |a Bildgebendes Verfahren | ||
653 | |a Computer Science | ||
653 | |a Electrical & Electronics Engineering | ||
653 | |a Elektrotechnik u. Elektronik | ||
653 | |a Imaging Systems & Technology | ||
653 | |a Informatik | ||
653 | |a Maschinelles Sehen | ||
653 | |a Mustererkennung | ||
653 | |a Optics & Photonics | ||
653 | |a Optik u. Photonik | ||
653 | |a Physics | ||
653 | |a Physik | ||
689 | 0 | 0 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 1 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ulrich, Markus |e Verfasser |4 aut | |
700 | 1 | |a Wiedemann, Christian |e Verfasser |4 aut | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-81290-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-81289-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, MOBI |z 978-3-527-81291-2 |
780 | 0 | 0 | |i Vorangegangen ist |z 9783527407347 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030067628 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0104 DAT 760f 2009 A 4762(2) 0303 DAT 760f 2009 L 424(2) |
---|---|
DE-BY-TUM_katkey | 2316329 |
DE-BY-TUM_location | 01 03 |
DE-BY-TUM_media_number | 040008153177 040008616508 040008616531 040008616519 040008616520 040008616542 040008616495 040008616553 040008616575 040008616586 040008616564 040008153097 040008153086 040008153257 040008503079 040008153224 040008153279 040008153268 040008501271 040008153235 040008153166 040008153155 040008153133 040008153122 040008153199 040008153188 040008153111 040008153100 040008153213 040008153202 040008153064 040008539480 040008539468 040008539457 040008539479 040008539526 040008539548 040008539504 040008539537 040008539491 040008539515 040008153075 |
_version_ | 1821934274434039808 |
adam_text | CONTENTS
LIST OF ABBREVIATIONS
XV
PREFACE TO THE SECOND EDITION
XIX
PREFACE TO THE FIRST EDITION
XXI
1 INTRODUCTION 1
2 IMAGE ACQUISITION
5
2.1 ILLUM
INATION...........................................................................................
5
2.1.1 ELECTROMAGNETIC R A D IA TIO N
.....................................................
5
2.1.2 TYPES OF LIGHT S O U R C E S
............................................................ 7
2.1.3 INTERACTION OF LIGHT AND M A TTE R
...............................................
8
2.1.4 USING THE SPECTRAL COMPOSITION OF THE ILLU M IN ATIO N
..............
10
2.1.5 USING THE DIRECTIONAL PROPERTIES OF THE ILLUM INATION.............
12
2.1.5.1 DIFFUSE BRIGHT-FIELD FRONT LIGHT ILLUMINATION . . . 13
2.1.5.2 DIRECTED BRIGHT-FIELD FRONT LIGHT ILLUMINATION . . . 14
2.1.5.3 DIRECTED DARK-FIELD FRONT LIGHT ILLUMINATION . . . 15
2.1.5.4 DIFFUSE BRIGHT-FIELD BACK LIGHT ILLUMINATION . . . 16
2.1.5.5 TELECENTRIC BRIGHT-FIELD BACK LIGHT ILLUMINATION . 17
2.2 L E N S E S
.....................................................................................................
18
2.2.1 PINHOLE CAMERAS
..................................................................... 18
2.2.2 GAUSSIAN O P TIC S
........................................................................
19
2.2.2.1 R EFRACTIO N
.................................................................. 19
2 2 2 .2 THICK LENS M O D E L
.....................................................
20
2.2.2.3 APERTURE STOP AND P U P I L S
......................................... 22
2.2.2.4 RELATION OF THE PINHOLE MODEL TO GAUSSIAN OPTICS . 24
2.2.3 DEPTH OF F IE LD
...........................................................................
25
2.2.4 TELECENTRIC L
ENSES.....................................................................
28
2.2.4.1 OBJECT-SIDE TELECENTRIC L E N SE S
...............................
28
2.2.4.2 BILATERAL TELECENTRIC L
ENSES...................................... 30
2.2.4.3 IMAGE-SIDE TELECENTRIC L E N S E S
...............................
31
2.2.4.4 PROJECTION CHARACTERISTICS OF L E N S E S
......................
32
2.2.5 TILT LENSES AND THE SCHEIMPFLUG P RIN C IP LE
............................
32
2.2.6 LENS A B E RRA TIO N S
......................................................................
36
2.2.6.1 SPHERICAL A B E RRA TIO N
................................................
36
2.2.6.2 C O M A
.........................................................................
36
2.2.6.3 A STIGM ATISM
...............................................................
37
2.2.6.4 CURVATURE OF F IE LD
......................................................
37
2.2.6.5 D ISTO RTIO N
..................................................................
37
2.2.6.6 CHROMATIC A BERRATION
...............................................
39
22.6.1 EDGE-SPREAD FUNCTION
...............................................
39
2.2.6.S V
IGNETTING...................................................................
40
2.3 C A M E RA
S..................................................................................................
41
2.3.1 CCD S E N S O R S
............................................................................
41
2.3.1.1 LINE
SENSORS................................................................
41
2.3.1.2 FULL FRAME ARRAY S EN SO
RS.......................................... 43
2.3.1.3 FRAME TRANSFER S E N SO
RS............................................. 43
2.3.1.4 INTERLINE TRANSFER S EN SO
RS.......................................... 44
2.3.1.5 READOUT M O D E S
.........................................................
46
2.3.2 CMOS S E N S O R S
.........................................................................
46
2.3.2.1 SENSOR A RCHITECTURE
...................................................
46
2.3.2.2 ROLLING AND GLOBAL SHUTTERS
......................................
47
2.3.3 COLOR CAM
ERAS............................................................................
48
2.3.3.1 SPECTRAL RESPONSE OF MONOCHROME CAMERAS .... 48
2.3.3.2 SINGLE-CHIP C A M E RA S
................................................
49
2.3.3.3 THREE-CHIP CAMERAS
................................................ 50
2.3.3.4 SPECTRAL RESPONSE OF COLOR C A M E RA S
.......................
50
2.3.4 SENSOR S IZ E S
...............................................................................
50
2.3.5 CAMERA P E RFO RM A N C E
...............................................................
52
2.3.5.1 NOISE
.........................................................................
52
2.3.5.2 SIGNAL-TO-NOISE R A TIO
...............................................
53
2.3.5.3 DYNAMIC R A N G E
......................................................... 54
2.3.5.4 NONUNIFORM
ITIES......................................................... 54
2.4 CAMERA-COMPUTER
INTERFACES...............................................................
55
2.4.1 ANALOG VIDEO S IG N A LS
................................................................
56
2.4.1.1 ANALOG VIDEO STANDARDS
.......................................... 56
2.4.1.2 ANALOG FRAME G
RABBERS............................................. 58
2.4.2 DIGITAL VIDEO S IG N A LS
............................................................... 60
2.4.2.1 CAMERA L IN K
................................................................ 61
2.4.2.2 CAMERA LINK H S
......................................................... 62
2.4.2.3 COAX PRESS
..................................................................
64
2.4.2.4 IEEE 1394
..................................................................
65
2.4.2.5 USB 2 . 0
.....................................................................
67
2A 2.6 USB3 VISION
............................................................. 68
2A.2.1 GIGE V IS IO N
................................................................ 69
2.4.3 GENERIC INTERFACES
.....................................................................
72
2.4.3.1 G E N I C A M
................................................................... 72
2.4.3.2 GENICAM G E N T L
.....................................................
77
2.4.4 IMAGE ACQUISITION M O D E
S.......................................................... 79
2.5 3D IMAGE ACQUISITION D E V IC E S
............................................................ 82
2.5.1 STEREO
SENSORS............................................................................
82
2.5.2 SHEET OF LIGHT SENSORS
............................................................ 84
2.5.3 STRUCTURED LIGHT S E N S O R S
......................................................... 86
2.5.3.1 PATTERN P RO JECTIO N
...................................................... 87
2.5.3.2 GRAY C O D E S
............................................................... 88
2.5.3.3 FRINGE P RO JE C TIO N
.....................................................
90
2.5.3.4 HYBRID S Y STE M
S......................................................... 91
2.5.4 TIME-OF-FLIGHT C AM
ERAS............................................................ 91
2.5.4.1 CONTINUOUS-WAVE-MODULATED TIME-OF-FLIGHT
C AM
ERAS.....................................................................
92
2.5.4.2 PULSE-MODULATED TIME-OF-FLIGHT C A M E RA S ............. 93
3 M ACHINE V ISION A LG O RITH M S 97
3.1 FUNDAMENTAL DATA S TRU CTU
RES............................................................... 97
3.1.1 IM AG
ES........................................................................................
97
3.1.2 R E G IO N S
.....................................................................................
98
3.1.3 SUBPIXEL-PRECISE C O N TO U R S
......................................................... 101
3.2 IMAGE ENHANCEM
ENT..................................................................................101
3.2.1 GRAY VALUE TRANSFORMATIONS
......................................................102
3.2.1.1 CONTRAST ENHANCEMENT
...............................................
102
3.2.1.2 CONTRAST N ORM ALIZATION
...............................................
102
3.2.1.3 ROBUST CONTRAST N ORM
ALIZATION...................................103
3.2.2 RADIOMETRIC CALIBRATION
...............................................................
105
3.2.2.1 CHART-BASED RADIOMETRIC CALIBRATION
.........................
105
3.2.2.2 CHARTLESS RADIOMETRIC C A LIB RA TIO N
............................
106
3.2.3 IMAGE S M O O TH IN G
.........................................................................110
3.2.3.1 TEMPORAL AVERAGING
.....................................................
I L L
3.2.3.2 MEAN F I L T E R
..................................................................112
3.2.3.3 BORDER TREATMENT OF F ILTE RS
.........................................113
3.2.3.4 RUNTIME COMPLEXITY OF F I L T E R S
...................................
114
3.2.3.5 LINEAR F I L T E R S
..............................................................
115
3.2.3.6 FREQUENCY RESPONSE OF THE MEAN FILTER
...................
116
3.23.1 GAUSSIAN FILTER
............................................................ 117
3.2.3.8 NOISE SUPPRESSION BY LINEAR FILTERS .........................118
3.2.3.9 MEDIAN AND RANK F I L T E R S
............................................
119
3.2.4 FOURIER TRANSFORM
.........................................................................120
3.2.4.1 CONTINUOUS FOURIER T RA N SFO RM
..................................
120
3.2.4.2 DISCRETE FOURIER T RANSFORM
.........................................
123
3.3 GEOMETRIC TRANSFORMATIONS
.....................................................................
126
3.3.1 AFFINE T RANSFORM
ATIONS................................................................126
3.3.1.1 PROJECTIVE TRANSFORM ATIONS
........................................
127
3.3.2 IMAGE T RANSFORM
ATIONS................................................................128
3.3.2.1 NEAREST-NEIGHBOR INTERPOLATION
..................................
128
3.3.2.2 BILINEAR IN
TERPOLATION................................................... 129
3.3.2.3 BICUBIC IN TERP O LATIO N
..................................................
130
3.3.2.4 SMOOTHING TO AVOID A LIA SIN G
......................................132
3.3.3 PROJECTIVE IMAGE TRANSFORMATIONS
.............................................133
3.3.4 POLAR
TRANSFORMATIONS...................................................................133
3.4 IMAGE
SEGMENTATION...............................................................................
135
3.4.1 THRESHOLDING
...............................................................................
135
3.4.1.1 GLOBAL THRESHOLDING
..................................................
135
3.4.1.2 AUTOMATIC THRESHOLD S ELECTIO N
...................................136
3.4.1.3 DYNAMIC T H RESH O LD IN G
...............................................
138
3.4.1.4 VARIATION M O D E
L............................................................141
3.4.2 EXTRACTION OF CONNECTED COMPONENTS
......................................
144
3.4.3 SUBPIXEL-PRECISE T HRESH O LD IN G
................................................... 147
3.5 FEATURE
EXTRACTION......................................................................................149
3.5.1 REGION F E A TU RE
S............................................................................
149
3.5.1.1 A R E A
...............................................................................149
3.5.1.2 MOMENTS
.....................................................................
150
3.5.1.3 ELLIPSE PARAM
ETERS.........................................................151
3.5.1.4 ENCLOSING RECTANGLES AND C IRCLES
...............................
153
3.5.1.5 CONTOUR L E N G TH
............................................................154
3.5.2 GRAY VALUE F
EATURES......................................................................154
3.5.2.1 STATISTICAL FEATURES
.....................................................
154
3.5.2.2 MOMENTS
.....................................................................
155
3.5.2.3 ELLIPSE PARAM
ETERS.........................................................155
3.5.2.4 COMPARISON OF REGION AND GRAY VALUE MOMENTS . 155
3.5.3 CONTOUR F E A TU R E S
.........................................................................
158
3.5.3.1 CONTOUR LENGTH, ENCLOSING RECTANGLES AND CIRCLES . 158
3.5.3.2 MOMENTS
.....................................................................
158
3.6 M ORPHOLOGY
...........................................................................................
159
3.6.1 REGION M
ORPHOLOGY......................................................................159
3.6.1.1 SET O
PERATIONS...............................................................
159
3.6.1.2 MINKOWSKI ADDITION AND D ILATION
...............................
161
3.6.1.3 MINKOWSKI SUBTRACTION AND E R O S IO N
.........................
163
3.6.1.4 REGION B O U N D A RIE S
...................................................... 166
3.6.1.5 HIT-OR-MISS T RA N S FO RM
...............................................
167
3.6.1.6 OPENING AND C LO S IN G
..................................................
168
3.6.1.7 S K ELETO N
........................................................................
172
3.6.1.8 DISTANCE T RAN SFO RM
.....................................................
173
3.6.2 GRAY VALUE MORPHOLOGY
............................................................
175
3.6.2.1 MINKOWSKI ADDITION AND D ILATION
...............................
175
3.6.2.2 MINKOWSKI SUBTRACTION AND E R O S IO N
.........................
176
3.6.2.3 OPENING AND C LO S IN G
..................................................
177
3.6.2.4 MORPHOLOGICAL G RADIENT
...............................................
179
3.7 EDGE E X TRACTIO N
.....................................................................................180
3.7.1 DEFINITION OF E D G E S
.................................................................. 180
3.7.1.1 DEFINITION OF EDGES IN I D
.........................................
180
3.7.1.2 DEFINITION OF EDGES IN 2 D
.............................................181
3.7.2 ID EDGE E X TRACTIO N
......................................................................183
3.7.2.1 DISCRETE DERIVATIVES
..................................................
184
3.12.2 SMOOTHING PERPENDICULAR TO A P RO
FILE..........................185
3.12.3 OPTIMAL EDGE FILTERS
...................................................186
3.7.2.4 PIXEL-ACCURATE EDGE EXTRACTION
....................................
188
3.7.2.5 SUBPIXEL-ACCURATE EDGE
EXTRACTION.............................189
3.7.3 2D EDGE E X TRACTIO N
......................................................................189
3.7.3.1 DISCRETE
DERIVATIVES.......................................................190
3.1.32 OPTIMAL EDGE FILTERS
....................................................191
3.7.3.3 NON-MAXIMUM SUPPRESSION
......................................
192
3.7.3.4 HYSTERESIS
THRESHOLDING................................................194
3.7.3.5 SUBPIXEL-ACCURATE EDGE EXTRACTION
.........................
194
3.7.4 ACCURACY AND PRECISION OF E D G E S
................................................196
3.7.4.1 DEFINITION OF ACCURACY AND
PRECISION..........................197
3.7.4.2 ANALYTICAL EDGE ACCURACY AND P RE C ISIO N
...................
198
3.1 A.3 EDGE ACCURACY AND PRECISION ON REAL IMAGES . . . 199
3.8 SEGMENTATION AND FITTING OF GEOMETRIC P RIM ITIVES
............................
203
3.8.1 FITTING L IN E S
..................................................................................204
3.8.1.1 LEAST-SQUARES LINE F I T T I N G
.........................................204
3.8.1.2 ROBUST LINE F I T T I N G
.....................................................
205
3.8.2 FITTING C IRC LE S
...............................................................................208
3.8.2.1 LEAST-SQUARES CIRCLE
FITTING.........................................208
3.8.2.2 ROBUST CIRCLE F I T T I N G
..................................................
209
3.8.3 FITTING ELLIPSES
...........................................................................
210
3.8.3.1 LEAST-SQUARES ELLIPSE F ITTIN G
......................................210
3.8.3.2 ROBUST ELLIPSE F ITTIN G
..................................................
210
3.8.4 SEGMENTATION OF
CONTOURS............................................................211
3.8.4.1 SEGMENTATION OF CONTOURS INTO L IN E S
.........................
211
3.8.4.2 SEGMENTATION OF CONTOURS INTO LINES, CIRCLES, AND
E L LIP S E S
........................................................................
213
3.9 CAMERA C ALIB RATIO N
..............................................................................
215
3.9.1 CAMERA MODELS FOR AREA SCAN CAMERAS WITH REGULAR LENSES 216
3.9.1.1 EXTERIOR O
RIENTATION..................................................... 217
3.9.1.2 PROJECTION FROM 3D TO 2 D
...........................................
219
3.9.1.3 LENS D ISTORTIONS
...........................................................
219
3.9.1.4 IMAGE COORDINATES
.....................................................221
3.9.2 CAMERA MODELS FOR AREA SCAN CAMERAS WITH TILT LENSES . . 222
3.9.2.1 LENS D
ISTORTIONS...........................................................
222
3.9.2.2 MODELING THE POSE OF THE TILTED IMAGE PLANE .... 222
3.9.2.3 IMAGE-SPACE TELECENTRIC L E N S E S
...............................
223
3.9.2.4 IMAGE-SPACE PERSPECTIVE L E N S E S
...............................
224
3.9.3 CAMERA MODEL FOR LINE SCAN C A M E RA S
......................................
225
3.9.3.1 CAMERA M O TIO N
............................................................ 225
3.9.3.2 EXTERIOR O
RIENTATION......................................................226
3.9.3.3 INTERIOR O RIE N TA TIO N
......................................................227
3.9.3.4 NONLINEARITIES OF THE LINE SCAN CAMERA MODEL . . . 229
3.9.4 CALIBRATION P R O C E S S
.....................................................................
230
3.9.4.1 CALIBRATION T A RG E
T.........................................................230
3.9.4.2 SINGLE-IMAGE CAMERA
CALIBRATION................................232
3.9.4.3 DEGENERACIES WHEN CALIBRATING WITH A SINGLE IMAGE 233
3.9A 4 MULTI-IMAGE CAMERA C ALIB RATIO N
................................234
3.9.4.5 DEGENERACIES OCCURRING WITH TILT L E N S E S
.............
234
3.9.4.6 EXCLUDING PARAMETERS FROM THE OPTIMIZATION . . . 235
3.9.5 WORLD COORDINATES FROM SINGLE IM AGES
......................................
235
3.9.5.1 TELECENTRIC C AM
ERAS......................................................236
3.9.5.2 PERSPECTIVE CAMERAS
...................................................236
3.9.5.3 LINE-SCAN C A M E RA S
......................................................238
3.9.5.4 IMAGE R
ECTIFICATION......................................................238
3.9.6 ACCURACY OF THE CAMERA P A RA M E TE RS
.........................................
238
3.9.6.1 INFLUENCE OF THE NUMBER OF CALIBRATION IMAGES ON
THE ACCURACY
...............................................................
239
3.9.6.2 INFLUENCE OF THE FOCUS SETTING ON THE CAMERA
PARAM ETERS
.....................................................................
240
3.9.6.3 INFLUENCE OF THE DIAPHRAGM SETTING ON THE CAMERA
PARAM
ETERS......................................................................240
3.10 3D RECONSTRUCTION
..................................................................................
241
3.10.1 STEREO RECONSTRUCTION
..................................................................
241
3.10.1.1 STEREO GEOMETRY
.........................................................242
3.10.1.2 STEREO C
ALIBRATION.........................................................243
3.10.1.3 EPIPOLAR G E O M E TRY
......................................................244
3.10.1.4 IMAGE R
ECTIFICATION......................................................247
3.10.1.5 D
ISPARITY.........................................................................249
3.10.1.6 STEREO M
ATCHING............................................................ 250
3.10.1.7 EFFECT OF WINDOW SIZE
...............................................
252
3.10.1.8 ROBUST STEREO M ATCHING
...............................................
253
3.10.1.9 SPACETIME STEREO M ATCH IN G
.........................................
254
3.10.2 SHEET OF LIGHT
RECONSTRUCTION......................................................254
3.10.2.1 EXTRACTION OF THE LASER LINE
......................................
255
3.10.2.2 SENSOR CALIBRATION AND 3D R ECONSTRUCTION
.............
256
3.10.3 STRUCTURED LIGHT R ECO N STRU CTIO N
...............................................
257
3.10.3.1 DECODING THE S T R I P E S
...................................................257
3.10.3.2 SENSOR CALIBRATION AND 3D R ECONSTRUCTION
................
258
3.11 TEMPLATE M A TC H IN G
..................................................................................
262
3.11.1 GRAY-VALUE-BASED TEMPLATE M A TC H IN G
....................................
263
3.11.1.1 SIMILARITY MEASURES BASED ON GRAY VALUE
DIFFERENCES
..................................................................
263
3.11.1.2 NORMALIZED C ROSS-C
ORRELATION...................................264
3.11.1.3 EFFICIENT EVALUATION OF THE SIMILARITY MEASURES . . 266
3.11.2 MATCHING USING IMAGE P Y RAM ID S
...............................................
267
3.11.2.1 IMAGE P Y RAM ID
S............................................................268
3.11.2.2 HIERARCHICAL S E A R C H
......................................................270
3.11.3 SUBPIXEL-ACCURATE GRAY-VALUE-BASED M A TC H IN G
......................
271
3.11.4 TEMPLATE MATCHING WITH ROTATIONS AND S CALIN G S
......................
272
3.11.5 ROBUST TEMPLATE M A TC H IN G
.........................................................273
3.11.5.1 MEAN SQUARED EDGE D
ISTANCE......................................274
3.11.5.2 HAUSDORFF D IS TA N C E
.....................................................
276
3.11.5.3 GENERALIZED HOUGH T RA N SFO RM
...................................277
3.11.5.4 GEOMETRIC H A S H IN G
.....................................................
281
3.11.5.5 MATCHING GEOMETRIC PRIM
ITIVES...................................283
3.11.5.6 SHAPE-BASED M A TC H IN G
...............................................
286
3.12 3D OBJECT R ECO G N ITIO N
........................................................................
292
3.12.1 DEFORMABLE M
ATCHING..................................................................
293
3.12.1.1 PRINCIPLE OF DEFORMABLE M A TC H IN G
............................
293
3.12.1.2 MODEL G
ENERATION.........................................................295
3.12.1.3 SIMILARITY M E A S U R E
......................................................295
3.12.1.4 HIERARCHICAL S E A R C H
......................................................297
3.12.1.5 LEAST-SQUARES POSE REFINEM
ENT...................................297
3.12.1.6 3D POSE E STIM ATIO N
......................................................297
3.12.1.7 RECOGNITION OF LOCALLY DEFORMED O B JE C TS
................
300
3.12.2 SHAPE-BASED 3D M A TC H IN G
.........................................................302
3.12.2.1 VIEW-BASED APPROACH
...............................................
303
3.12.2.2 RESTRICTING THE POSE R A N G E
.........................................
306
3.12.2.3 HIERARCHICAL M O D E L
......................................................307
3.12.2.4 2D MODEL G ENERATION
..................................................
308
3.12.2.5 PERSPECTIVE C O RRE C TIO N
...............................................
310
3.12.2.6 LEAST-SQUARES POSE R EFINEM
ENT...................................311
3.12.2.7 E X A M P LE S
.....................................................................
312
3.12.3 SURFACE-BASED 3D MATCHING
......................................................313
3.12.3.1 GLOBAL MODEL DESCRIPTION
............................................
314
3.12.3.2 LOCAL P A RA M E TE
RS.........................................................316
3.12.3.3 V O TIN G
...........................................................................
318
3.12.3.4 LEAST-SQUARES POSE REFINEM
ENT...................................319
3.12.3.5 EXTENSION FOR RECOGNIZING DEFORMED OBJECTS . . . 321
3.12.3.6 EXTENSION FOR MULTIMODAL D A TA
...................................321
3.13 HAND-EYE CALIBRATION
...........................................................................
323
3.13.1
INTRODUCTION..................................................................................323
3.13.2 PROBLEM D E FIN ITIO N
.....................................................................
325
3.13.3 DUAL QUATERNIONS AND SCREW T H E O RY
.........................................
327
3.13.3.1 Q
UATERNIONS..................................................................
327
3.13.3.2 S CREW S
...........................................................................
329
3.13.3.3 DUAL N UM
BERS...............................................................330
3.13.3.4 DUAL Q U ATERN IO N
S.......................................................330
3.13.4 LINEAR HAND-EYE C
ALIBRATION......................................................331
3.13.5 NONLINEAR HAND-EYE C ALIB RATIO N
...............................................
334
3.13.6 HAND-EYE CALIBRATION OF SCARA R O B O T S
................................335
3.14 OPTICAL CHARACTER R E C O G N ITIO N
...............................................................
337
3.14.1 CHARACTER SEGM ENTATION
...............................................................
338
3.14.2 FEATURE
EXTRACTION.........................................................................339
3.15 C LASSIFICATIO N
............................................................................................342
3.15.1 DECISION T
HEORY............................................................................343
3.15.1.1 BAYES DECISION RULE
...................................................343
3.15.1.2 CLASSIFIER T Y P E S
............................................................ 345
3.15.1.3 TRAINING, TEST, AND VALIDATION S E T S
.............................345
3.15.1.4 NOVELTY D
ETECTION......................................................... 345
3.15.2 CLASSIFIERS BASED ON ESTIMATING CLASS P RO B A B ILITIE S
.............
346
3.15.2.1 K NEAREST-NEIGHBOR C LA SSIFIE RS
...................................
347
3.15.2.2 GAUSSIAN MIXTURE MODEL C LA SSIFIE RS
.........................
347
3.15.3 CLASSIFIERS BASED ON CONSTRUCTING SEPARATING HYPERSURFACES 350
3.15.3.1 SINGLE-LAYER P ERCEP TRO N S
............................................
350
3.15.3.2 MULTILAYER PERCEPTRONS
...............................................
352
3.15.3.3 SUPPORT VECTOR M ACH IN ES
............................................
358
3.15.3.4 CONVOLUTIONAL NEURAL N
ETWORKS...................................365
3.15.4 EXAMPLE OF USING CLASSIFIERS FOR O C R
......................................
369
4 M ACHINE V ISION A P P LIC A TIO N S 371
4.1 WAFER D I C I N G
............................................................................................371
4.1.1 DETERMINING THE WIDTH AND HEIGHT OF THE D IE S
.........................
372
4.1.2 DETERMINING THE POSITION OF THE D I E S
........................................
374
4.1.3 EXERCISES
.....................................................................................
376
4.2 READING OF SERIAL N U M B E RS
.....................................................................
377
4.2.1 RECTIFYING THE IMAGE USING A POLAR T RANSFORM ATION
................
377
4.2.2 SEGMENTING THE C H A RA C TE
RS.........................................................380
4.2.3 READING THE C H A RA C TE RS
...............................................................
382
4.2.4 EXERCISES
.....................................................................................
382
4.3 INSPECTION OF SAW B LA D E S
.........................................................................383
4.3.1 EXTRACTING THE SAW BLADE C O N TO U R
............................................
384
4.3.2 EXTRACTING THE TEETH OF THE SAW B L A D E
......................................
385
4.3.3 MEASURING THE ANGLES OF THE TEETH OF THE SAW B LADE
................
386
4.3.4 E X E RC ISE
........................................................................................
388
4.4 PRINT IN SP E C TIO N
........................................................................................
388
4.4.1 CREATING THE MODEL OF THE CORRECT PRINT ON THE RELAY .... 389
4.4.2 CREATING THE MODEL TO ALIGN THE R ELAYS
......................................
390
4.4.3 PERFORMING THE PRINT
INSPECTION...................................................391
4.4.4 EXERCISES
.....................................................................................
392
4.5 INSPECTION OF BALL GRID A R R A Y S
...............................................................
392
4.5.1 FINDING BALLS WITH SHAPE D EFECTS
..............................................
393
4.5.2 CONSTRUCTING A GEOMETRIC MODEL OF A CORRECT B G A
.............
395
4.5.3 FINDING MISSING AND EXTRANEOUS B A L L S
......................................397
4.5.4 FINDING DISPLACED B A LLS
............................................................... 398
4.5.5 EXERCISES
.....................................................................................400
4.6 SURFACE
INSPECTION..................................................................................400
4.6.1 SEGMENTING THE DOORKNOB
.........................................................401
4.6.2 FINDING THE SURFACE TO INSPECT
..................................................
402
4.6.3 DETECTING D E FE C TS
........................................................................
405
4.6.4 EXERCISES
.....................................................................................407
4.7 MEASUREMENT OF SPARK P L U G S
..................................................................408
4.7.1 CALIBRATING THE C A M E RA
...............................................................409
4.7.2 DETERMINING THE POSITION OF THE SPARK PLUG
............................
410
4.7.3 PERFORMING THE M EASUREM ENT
.....................................................
411
4.7.4 EXERCISES
.....................................................................................413
4.8 MOLDING FLASH D E TE C TIO N
........................................................................
414
4.8.1 MOLDING FLASH DETECTION USING REGION MORPHOLOGY .... 414
4.8.2 MOLDING FLASH DETECTION WITH SUBPIXEL-PRECISE CONTOURS . . 418
4.8.3 E X E RC ISE
........................................................................................
421
4.9 INSPECTION OF PUNCHED S H E E TS
.................................................................. 421
4.9.1 EXTRACTING THE BOUNDARIES OF THE PUNCHED SHEETS
...................
422
4.9.2 PERFORMING THE
INSPECTION............................................................424
4.9.3 EXERCISES
.....................................................................................425
4.10 3D PLANE RECONSTRUCTION WITH S TE RE O
..................................................
425
4.10.1 CALIBRATING THE STEREO SETUP
..................................................
426
4.10.2 PERFORMING THE 3D RECONSTRUCTION AND IN SP ECTIO N
...................
428
4.10.3 E X E RC ISE
........................................................................................
432
4.11 POSE VERIFICATION OF
RESISTORS..................................................................
432
4.11.1 CREATING MODELS OF THE R E SISTO RS
...............................................
433
4.11.2 VERIFYING THE POSE AND TYPE OF THE R ESISTORS
............................
436
4.11.3 EXERCISES
.....................................................................................438
4.12 CLASSIFICATION OF NON-WOVEN F A B RIC S
.....................................................
438
4.12.1 TRAINING THE
CLASSIFIER..................................................................
438
4.12.2 PERFORMING THE TEXTURE
CLASSIFICATION.........................................440
4.12.3 E X E RC ISE
........................................................................................443
4.13 SURFACE COM
PARISON..................................................................................443
4.13.1 CREATING THE REFERENCE MODEL
..................................................
443
4.13.2 RECONSTRUCTING AND ALIGNING O
BJECTS.........................................445
4.13.3 COMPARING OBJECTS AND CLASSIFYING E RRO RS
...............................
445
4.13.4 E X E RC ISE
........................................................................................450
4.14 3D
PICK-AND-PLACE.....................................................................................451
4.14.1 PERFORMING THE HAND-EYE C A LIB RA TIO N
......................................452
4.14.2 DEFINING THE GRASPING P O IN T
........................................................
455
4.14.3 PICKING AND PLACING OBJECTS
.....................................................
457
4.14.4 EXERCISES
.....................................................................................458
REFERENCES
461
INDEX
475
|
any_adam_object | 1 |
author | Steger, Carsten Ulrich, Markus Wiedemann, Christian |
author_facet | Steger, Carsten Ulrich, Markus Wiedemann, Christian |
author_role | aut aut aut |
author_sort | Steger, Carsten |
author_variant | c s cs m u mu c w cw |
building | Verbundindex |
bvnumber | BV044670270 |
classification_rvk | ST 330 |
classification_tum | DAT 760f |
ctrlnum | (OCoLC)1022089388 (DE-599)DNB1140659693 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik Informatik |
edition | 2nd, completely revised and enlarged edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02806nam a22007218c 4500</leader><controlfield tag="001">BV044670270</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200701 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">171206s2018 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N41</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1140659693</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527413652</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-527-41365-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527413652</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1141365 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1022089388</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1140659693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 760f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steger, Carsten</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine vision algorithms and applications</subfield><subfield code="c">Carsten Steger, Markus Ulrich, and Christian Wiedemann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd, completely revised and enlarged edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 494 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithmen u. Datenstrukturen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithms & Data Structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bildgebende Systeme u. Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bildgebendes Verfahren</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical & Electronics Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrotechnik u. Elektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Imaging Systems & Technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Informatik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinelles Sehen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mustererkennung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optics & Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optik u. Photonik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ulrich, Markus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiedemann, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-81290-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-81289-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, MOBI</subfield><subfield code="z">978-3-527-81291-2</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="z">9783527407347</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030067628</subfield></datafield></record></collection> |
id | DE-604.BV044670270 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:08:35Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527413652 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030067628 |
oclc_num | 1022089388 |
open_access_boolean | |
owner | DE-M347 DE-1050 DE-11 DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-573 DE-703 DE-898 DE-BY-UBR DE-861 |
owner_facet | DE-M347 DE-1050 DE-11 DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-573 DE-703 DE-898 DE-BY-UBR DE-861 |
physical | xxii, 494 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Wiley-VCH |
record_format | marc |
spellingShingle | Steger, Carsten Ulrich, Markus Wiedemann, Christian Machine vision algorithms and applications Maschinelles Sehen (DE-588)4129594-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4129594-8 (DE-588)4040936-3 |
title | Machine vision algorithms and applications |
title_auth | Machine vision algorithms and applications |
title_exact_search | Machine vision algorithms and applications |
title_full | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_fullStr | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_full_unstemmed | Machine vision algorithms and applications Carsten Steger, Markus Ulrich, and Christian Wiedemann |
title_short | Machine vision algorithms and applications |
title_sort | machine vision algorithms and applications |
topic | Maschinelles Sehen (DE-588)4129594-8 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Maschinelles Sehen Mustererkennung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41365-2/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030067628&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stegercarsten machinevisionalgorithmsandapplications AT ulrichmarkus machinevisionalgorithmsandapplications AT wiedemannchristian machinevisionalgorithmsandapplications AT wileyvch machinevisionalgorithmsandapplications |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Mathematik & Informatik
Signatur: |
0104 DAT 760f 2009 A 4762(2) Lageplan |
---|---|
Exemplar 1 | Nicht ausleihbar Am Standort |
Teilbibliothek Chemie, Lehrbuchsammlung
Signatur: |
0303 DAT 760f 2009 L 424(2) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 2 | Ausleihbar Am Standort |
Exemplar 3 | Ausleihbar Am Standort |
Exemplar 4 | Ausleihbar Am Standort |
Exemplar 5 | Ausleihbar Am Standort |
Exemplar 6 | Ausleihbar Am Standort |
Exemplar 7 | Ausleihbar Am Standort |
Exemplar 8 | Ausleihbar Am Standort |
Exemplar 9 | Ausleihbar Am Standort |
Exemplar 10 | Ausleihbar Am Standort |
Exemplar 11 | Ausleihbar Am Standort |
Exemplar 12 | Ausleihbar Am Standort |
Exemplar 13 | Ausleihbar Am Standort |
Exemplar 14 | Ausleihbar Am Standort |
Exemplar 15 | Ausleihbar Am Standort |
Exemplar 16 | Ausleihbar Am Standort |
Exemplar 17 | Ausleihbar Am Standort |
Exemplar 18 | Ausleihbar Am Standort |
Exemplar 19 | Ausleihbar Am Standort |
Exemplar 20 | Ausleihbar Am Standort |
Exemplar 21 | Ausleihbar Am Standort |
Exemplar 22 | Ausleihbar Am Standort |
Exemplar 23 | Ausleihbar Am Standort |
Exemplar 24 | Ausleihbar Am Standort |
Exemplar 25 | Ausleihbar Am Standort |
Exemplar 26 | Ausleihbar Am Standort |
Exemplar 27 | Ausleihbar Am Standort |
Exemplar 28 | Ausleihbar Am Standort |
Exemplar 29 | Ausleihbar Am Standort |
Exemplar 30 | Ausleihbar Am Standort |
Exemplar 31 | Ausleihbar Am Standort |
Exemplar 32 | Ausleihbar Am Standort |
Exemplar 33 | Ausleihbar Am Standort |
Exemplar 34 | Ausleihbar Am Standort |
Exemplar 35 | Ausleihbar Am Standort |
Exemplar 36 | Ausleihbar Am Standort |
Exemplar 37 | Ausleihbar Am Standort |
Exemplar 38 | Ausleihbar Am Standort |
Exemplar 39 | Ausleihbar Am Standort |
Exemplar 40 | Ausleihbar Am Standort |
Exemplar 41 | Ausleihbar Am Standort |