Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Introduction to Hamiltonian dy...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Main Authors: Meyer, Kenneth R. 1937- (Author), Offin, Dan (Author)
Format: Electronic eBook
Language:English
Published: Cham Springer [2017]
Edition:Third edition
Series:Applied Mathematical Sciences 90
Subjects:
Mathematics
Dynamics
Ergodic theory
Physics
Vibration
Dynamical systems
Dynamical Systems and Ergodic Theory
Theoretical, Mathematical and Computational Physics
Vibration, Dynamical Systems, Control
Mathematik
Vielkörperproblem
Hamiltonsches System
Links:https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
https://doi.org/10.1007/978-3-319-53691-0
Physical Description:1 Online-Ressource (XIII, 384 Seiten, 40 illus., 9 illus. in color)
ISBN:9783319536910
ISSN:0066-5452
DOI:10.1007/978-3-319-53691-0
Staff View

MARC

LEADER 00000nam a2200000zcb4500
001 BV044334275
003 DE-604
005 20220209
007 cr|uuu---uuuuu
008 170601s2017 xx o|||| 00||| eng d
020 |a 9783319536910  |c Online  |9 978-3-319-53691-0 
024 7 |a 10.1007/978-3-319-53691-0  |2 doi 
035 |a (ZDB-2-SMA)9783319536910 
035 |a (OCoLC)989804977 
035 |a (DE-599)BVBBV044334275 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-523  |a DE-703  |a DE-863  |a DE-20  |a DE-739  |a DE-634  |a DE-862  |a DE-824  |a DE-188 
082 0 |a 515.39  |2 23 
082 0 |a 515.48  |2 23 
084 |a SK 520  |0 (DE-625)143244:  |2 rvk 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a SK 810  |0 (DE-625)143257:  |2 rvk 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Meyer, Kenneth R.  |d 1937-  |e Verfasser  |0 (DE-588)120262827  |4 aut 
245 1 0 |a Introduction to Hamiltonian dynamical systems and the N-body problem  |c Kenneth R. Meyer, Daniel C. Offin 
250 |a Third edition 
264 1 |a Cham  |b Springer  |c [2017] 
300 |a 1 Online-Ressource (XIII, 384 Seiten, 40 illus., 9 illus. in color) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Applied mathematical sciences  |v volume 90  |x 0066-5452 
650 4 |a Mathematics 
650 4 |a Dynamics 
650 4 |a Ergodic theory 
650 4 |a Physics 
650 4 |a Vibration 
650 4 |a Dynamical systems 
650 4 |a Dynamical Systems and Ergodic Theory 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 4 |a Vibration, Dynamical Systems, Control 
650 4 |a Mathematik 
650 0 7 |a Vielkörperproblem  |0 (DE-588)4078900-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Hamiltonsches System  |0 (DE-588)4139943-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Hamiltonsches System  |0 (DE-588)4139943-2  |D s 
689 0 1 |a Vielkörperproblem  |0 (DE-588)4078900-7  |D s 
689 0 |5 DE-604 
700 1 |a Offin, Dan  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-53690-3 
830 0 |a Applied Mathematical Sciences  |v 90  |w (DE-604)BV040244599  |9 90 
856 4 0 |u https://doi.org/10.1007/978-3-319-53691-0  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2017 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029737456 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-863  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-862  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-523  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-53691-0  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Record in the Search Index

DE-BY-OTHR_katkey 5907805
DE-BY-TUM_katkey 2263975
_version_ 1831257140730265601
any_adam_object
author Meyer, Kenneth R. 1937-
Offin, Dan
author_GND (DE-588)120262827
author_facet Meyer, Kenneth R. 1937-
Offin, Dan
author_role aut
aut
author_sort Meyer, Kenneth R. 1937-
author_variant k r m kr krm
d o do
building Verbundindex
bvnumber BV044334275
classification_rvk SK 520
SK 950
SK 810
SK 350
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783319536910
(OCoLC)989804977
(DE-599)BVBBV044334275
dewey-full 515.39
515.48
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.39
515.48
dewey-search 515.39
515.48
dewey-sort 3515.39
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-53691-0
edition Third edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03526nam a2200781zcb4500</leader><controlfield tag="001">BV044334275</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170601s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319536910</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-53691-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-53691-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319536910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)989804977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044334275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer, Kenneth R.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120262827</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Hamiltonian dynamical systems and the N-body problem</subfield><subfield code="c">Kenneth R. Meyer, Daniel C. Offin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 384 Seiten, 40 illus., 9 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">volume 90</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Offin, Dan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-53690-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">90</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029737456</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-53691-0</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044334275
illustrated Not Illustrated
indexdate 2024-12-20T18:00:10Z
institution BVB
isbn 9783319536910
issn 0066-5452
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029737456
oclc_num 989804977
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-188
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-188
physical 1 Online-Ressource (XIII, 384 Seiten, 40 illus., 9 illus. in color)
psigel ZDB-2-SMA
ZDB-2-SMA_2017
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Springer
record_format marc
series Applied Mathematical Sciences
series2 Applied mathematical sciences
spellingShingle Meyer, Kenneth R. 1937-
Offin, Dan
Introduction to Hamiltonian dynamical systems and the N-body problem
Applied Mathematical Sciences
Mathematics
Dynamics
Ergodic theory
Physics
Vibration
Dynamical systems
Dynamical Systems and Ergodic Theory
Theoretical, Mathematical and Computational Physics
Vibration, Dynamical Systems, Control
Mathematik
Vielkörperproblem (DE-588)4078900-7 gnd
Hamiltonsches System (DE-588)4139943-2 gnd
subject_GND (DE-588)4078900-7
(DE-588)4139943-2
title Introduction to Hamiltonian dynamical systems and the N-body problem
title_auth Introduction to Hamiltonian dynamical systems and the N-body problem
title_exact_search Introduction to Hamiltonian dynamical systems and the N-body problem
title_full Introduction to Hamiltonian dynamical systems and the N-body problem Kenneth R. Meyer, Daniel C. Offin
title_fullStr Introduction to Hamiltonian dynamical systems and the N-body problem Kenneth R. Meyer, Daniel C. Offin
title_full_unstemmed Introduction to Hamiltonian dynamical systems and the N-body problem Kenneth R. Meyer, Daniel C. Offin
title_short Introduction to Hamiltonian dynamical systems and the N-body problem
title_sort introduction to hamiltonian dynamical systems and the n body problem
topic Mathematics
Dynamics
Ergodic theory
Physics
Vibration
Dynamical systems
Dynamical Systems and Ergodic Theory
Theoretical, Mathematical and Computational Physics
Vibration, Dynamical Systems, Control
Mathematik
Vielkörperproblem (DE-588)4078900-7 gnd
Hamiltonsches System (DE-588)4139943-2 gnd
topic_facet Mathematics
Dynamics
Ergodic theory
Physics
Vibration
Dynamical systems
Dynamical Systems and Ergodic Theory
Theoretical, Mathematical and Computational Physics
Vibration, Dynamical Systems, Control
Mathematik
Vielkörperproblem
Hamiltonsches System
url https://doi.org/10.1007/978-3-319-53691-0
volume_link (DE-604)BV040244599
work_keys_str_mv AT meyerkennethr introductiontohamiltoniandynamicalsystemsandthenbodyproblem
AT offindan introductiontohamiltoniandynamicalsystemsandthenbodyproblem
  • Availability
Order (Login required)
Read online
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline