History of Nonlinear Oscillations Theory in France (1880-1940):
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
[Cham]
Springer
[2017]
|
Schriftenreihe: | Archimedes
49 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029720574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Beschreibung: | Literaturverzeichnis Seite 347-374 |
Umfang: | xxxvii, 381 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9783319552385 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV044317026 | ||
003 | DE-604 | ||
005 | 20231207 | ||
007 | t| | ||
008 | 170518s2017 xx a||| |||| 00||| eng d | ||
020 | |a 9783319552385 |9 978-3-319-55238-5 | ||
035 | |a (OCoLC)987591141 | ||
035 | |a (DE-599)BVBBV044317026 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-210 | ||
082 | 0 | |a 620.0042 |2 23 | |
084 | |a HIST |q DE-210 |2 fid | ||
084 | |a AK 17350 |0 (DE-625)2536:1800 |2 rvk | ||
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
100 | 1 | |a Ginoux, Jean-Marc |d 1969- |e Verfasser |0 (DE-588)1048236684 |4 aut | |
245 | 1 | 0 | |a History of Nonlinear Oscillations Theory in France (1880-1940) |c Jean-Marc Ginoux |
264 | 1 | |a [Cham] |b Springer |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a xxxvii, 381 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Archimedes |v Volume 49 | |
500 | |a Literaturverzeichnis Seite 347-374 | ||
648 | 7 | |a Geschichte 1880-1940 |2 gnd |9 rswk-swf | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematics | |
650 | 4 | |a History | |
650 | 4 | |a Engineering design | |
650 | 4 | |a Engineering Design | |
650 | 4 | |a Philosophical and Historical Foundations of Science | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Schwingung |0 (DE-588)4042100-4 |2 gnd |9 rswk-swf |
651 | 7 | |a Frankreich |0 (DE-588)4018145-5 |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Frankreich |0 (DE-588)4018145-5 |D g |
689 | 0 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 0 | 2 | |a Nichtlineare Schwingung |0 (DE-588)4042100-4 |D s |
689 | 0 | 3 | |a Geschichte 1880-1940 |A z |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, eBook |z 978-3-319-55239-2 |
830 | 0 | |a Archimedes |v 49 |w (DE-604)BV021292753 |9 49 | |
856 | 4 | 2 | |m Digitalisierung Deutsches Museum |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029720574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029720574 |
Datensatz im Suchindex
_version_ | 1819248430391754752 |
---|---|
adam_text | CONTENTS
PART
I
FROM SUSTAINED
OSCILLATIONS
TO
RELAXATION
OSCILLATIONS
1
FROM
THE
SERIES-DYNAMO
MACHINE
TO THE
SINGING
ARC:
GERARD-LESCUYER,
BLONDEL, POINCARE
......................................
3
1.1
THE SERIES
DYNAMO MACHINE: THE EXPRESSION
OF
NONLINEARITY
....
3
1.1.1 JEAN-MARIE-ANATOLE
GERARD-LESCUYER S
PARADOXICAL
EXPERIMENT
....................................
3
1.1.2 THEODORE
DU MONCEL S
ELECTROKINETIC
INTERPRETATION
OF
THE
PARADOX
..............................
6
1.1.3 AIME
WITZ S GEOMETRICAL
INTERPRETATION
OF
THE
PARADOX
..............................................
7
1.1.4
PAUL JANET S
INCOMPLETE
EQUATION MODELING
(I)
...........
10
1.2
THE
SINGING ARC:
SUSTAINED
OSCILLATIONS
............................
12
1.2.1
WILLIAM
DU BOIS
DUDDELL S REVISION
OF
THOMSON S
FORMULA
.....................................................
12
1.2.2 EDLUND
AND
LUGGIN S
WORK ON
THE
CONCEPT
OF
NEGATIVE
RESISTANCE
..................................
15
1.2.3
ANDRE
BLONDEL S
WORK
AND
THE
NON-EXISTENCE
OF A
C. E. M..
F
...................................................
17
1.3
THE
ARC HYSTERESIS PHENOMENON:
HYSTERESIS
CYCLES
OR
LIMIT
CYCLES?
......................................................
18
1.3.1
THE STATIC
AND
DYNAMIC
CHARACTERISTICS
OF
THE
ARC.......
18
1.3.2
HERTHA
AYRTON S
WORKS
.....................................
19
1.3.3
ANDRE BLONDEL S
WORK ON
THE
SINGING ARC
PHENOMENON
................................................
21
1.3.4
THEODORE SIMON S
WORK:
THE HYSTERESIS
CYCLE
...........
24
1.3.5
HEINRICH BARKHAUSEN S
WORK
...............................
25
1.3.6
ERNST RUHMER S
WORK
.......................................
25
XIX
-P.
IBIIOTHEK
DEUTSCHES
MUSEUM
..
XX
CONTENTS
1.4 HENRI
POINCARE S FORGOTTEN
LECTURES:
THE LIMIT CYCLES
IN 1908
................................................................
27
1.4.1
SETTING
INTO EQUATION
THE
OSCILLATIONS SUSTAINED
BY
THE
SINGING
ARC
.............................................
29
1.4.2 THE SINGING
ARC S
ELECTROMOTIVE
FORCE
...................
30
1.4.3
STABILITY
OF
THE
SUSTAINED
OSCILLATIONS
AND
LIMIT
CYCLES
.......................................................
32
1.4.4
POINCARE
STABILITY
AND
LYAPUNOV STABILITY
...........
34
2 THE
GREAT WAR
AND
THE
FIRST
TRIODE
DESIGNS:
ABRAHAM,
BLOCH,
BLONDEL,
VAN DER
POL
........................................................
39
2.1 THE
GREAT WAR
AND
THE
RISE
OF
WIRELESS TELEGRAPHY:
THE
T. M. VALVE
AND
THE
MULTIVIBRATOR
...............................
39
2.1.1
GENERAL
FERRIE:
FROM WIRELESS
TELEGRAPHY
TO THE
EIFFEL TOWER
.................................................
39
2.1.2 THE T. M.
VALVE:
TELEGRAPHIE
MILITAIRE
.....................
41
2.1.3
THE MULTIVIBRATOR:
FROM
THE
THOMSON-TYPE
SYSTEMS
TO
RELAXATION
SYSTEMS
............................
45
2.2 THE
THREE-ELECTRODE
VALVE
OR
TRIODE:
SUSTAINED
OSCILLATIONS
.....
54
2.2.1 PAUL
JANET S
WORK:
ANALOGY
AND
INCOMPLETE
EQUATION
MODELING
(II)
.....................................
54
2.2.2
ANDRE BLONDEL:
THE
ANTERIORITY
OF
THE
WRITING
OF
THE
TRIODE
EQUATION
.........................................
58
2.3 BALTHASAR
VAN
DER
POL S
EQUATION
FOR
THE
TRIODE
....................
62
2.3.1
MODELING
....................................................
63
2.3.2
WRITING
THE
EQUATION
.......................................
64
2.3.3
CALCULATING
THE
PERIOD
AND
AMPLITUDE
OF
THE
OSCILLATIONS
..........................................
64
3
VAN DER POL S PROTOTYPE
EQUATION:
EXISTENCE
AND
UNIQUENESS
OF
THE
PERIODIC
SOLUTION
CARTAN, VAN
DER POL,
LIENARD
..................
67
3.1 JANET
AND
CARTAN S WORK
.............................................
67
3.1.1 JANET S
PREFACE
..............................................
67
3.1.2
THE
AND
HENRI
CARTAN S
WORK:
THE
EXISTENCE
OF A
PERIODIC
SOLUTION
......................................
69
3.2 BALTHASAR VAN
DER POL S
STUDY TOWARDS
A
NEW
TYPE
OF
OSCILLATION
.........................................................
71
3.2.1 THE
GENERIC
CHARACTER
OF
VAN
DER POL S
EQUATION
........
72
3.2.2
GRAPHICAL INTEGRATION
AND
RELAXATION
OSCILLATIONS........
75
3.2.3 GENERALIZING
THE
PHENOMENON:
TOWARDS
A
NONLINEAR
MODEL
............................................
86
3.3 LIENARD S
WORK
AND
SKEPTICISM
REGARDING
VAN
DER POL S
RESULTS
................................................................
89
3.3.1 EXISTENCE
AND
UNIQUENESS
OF
THE
STABLE
PERIODIC
SOLUTION
.....................................................
90
CONTENTS
XXI
3.3.2
ANALYTICAL
DETERMINATION SUSTAINED OSCILLATIONS
AMPLITUDE
...................................................
97
3.3.3
CHARACTERIZATION
OF
THE
OSCILLATORY
PHENOMENON
DUALITY
......................................................
98
3.3.4
ANALYTICAL DETERMINATION
OF
THE
SUSTAINED
OSCILLATION
PERIOD
...........................................
99
CONCLUSION
OF
PART
I
..............................................................
103
PART
II FROM
RELAXATION
OSCILLATIONS
TO
SELF-OSCILLATIONS
4
VAN
DER
POLLS
LECTURES: TOWARDS
THE
CONCEPT
OF
RELAXATION
OSCILLATIONS
..................................................................
109
4.1
CONFERENCES
IN
FRANCE (1928-1937)
................................
111
4.1.1
PRESENTATION
ON
THE
24TH
OF
MAY 1928
AT
THE
SOCIETE
DE
GEOGRAPHIE
..............................................
111
4.1.2
LECTURES
ON
THE
10TH
AND
11TH
OF
MARCH
AT
THE
ECOLE
SUPERIEURE
D ELECTRICITE
.............................
118
4.2
THE
THIRD INTERNATIONAL CONGRESS
FOR APPLIED
MECHANICS
.........
128
5 ANDRONOV S
NOTES:
TOWARD
THE
CONCEPT
OF
SELF-OSCILLATIONS
............
131
5.1
THE
LECTURE
OF
SOVIET PHYSICISTS
OF
1928:
FROM LIMIT
CYCLES
TO
SELF-OSCILLATIONS
...........................................
132
5.2
NOTE
TO
THE
C.
R.
A. S.
OF
1929:
FROM
SELF-OSCILLATIONS
TO
SELF-SUSTAINED
OSCILLATIONS
..........................................
134
5.3
ON
LIMIT
CYCLE STABILITY:
FROM
POINCARE,
TO
LIENARD,
TO
ANDRONOV
...........................................................
137
5.4
THE
GENERAL
ASSEMBLY
OF
THE
I. U.
R.
S
IN
1934
......................
142
6
RESPONSE
TO
VAN
DER
POLLS
AND
ANDRONOV S
WORK IN FRANCE
..........
145
6.1
PHILIPPE
LE
CORBEILLER S WORK:
TOWARDS HISTORY
OF
OSCILLATIONS
THEORY
...
...............................................
146
6.1.1
THE THIRD INTERNATIONAL
CONGRESS
FOR APPLIED
MECHANICS
IN
STOCKHOLM
..................................
147
6.1.2
PRESENTATIONS
ON
6-7
MAY
1931
AT
THE
CONSERVATOIRE
NATIONAL
DES ARTS
ET
METIERS
...............
148
6.1.3
PRESENTATION
OF
SEPTEMBER
1931
AT
THE
SOCIETE
D ECONOMETRIE IN
LAUSANNE
................................
152
6.1.4
PRESENTATION
OF
22 APRIL 1932
AT
THE
ECOLE
SUPERIEURE
DES
POSTES
ET
TELEGRAPHES
......................
153
6.1.5
PRESENTATION
ON
THE
3RD
OF
APRIL
1935,
IN FRONT
OF
THE
WIRELESS
SECTION
IN
LONDON
............................
156
6.2
ALFRED
LIENARD S
WORK: FROM
SUSTAINED
OSCILLATIONS
TO
SELF-SUSTAINED
OSCILLATIONS
..........................................
158
XXII
CONTENTS
7 THE
FIRST INTERNATIONAL
CONFERENCE
ON
NONLINEAR
PROCESSES:
PARIS
1933
....................................................................
165
7.1
THE
FIRST INTERNATIONAL
CONFERENCE
ON
NONLINEAR
PROCESSES:
THE
FORGOTTEN
CONFERENCE?
..........................................
165
7.1.1
THE THREE
SOURCES
ENIGMA
..............................
165
7.1.2
THE VENUE:
THE
HENRI
POINCARE
INSTITUTE
..................
168
7.1.3
THE LIST
OF
PARTICIPANTS
.....................................
168
7.1.4
PROCEEDINGS
OF
THE
CONFERENCE
.............................
171
8
THE PARADIGM
OF
RELAXATION
OSCILLATIONS
IN FRANCE
....................
177
8.1 HAAG
AND
ROCARD S
WORKS
FROM
A
MATHEMATICAL
VIEWPOINT
.......
177
8.1.1 JULES
HAAG:
FROM
SELF-SUSTAINED
OSCILLATIONS
TO
RELAXATION
OSCILLATIONS
.....................................
177
8.1.2 YVES ROCARD:
RELAXATION
OSCILLATIONS
AND
SELF-OSCILLATIONS
............................................
188
8.2 PHENOMENOLOGICAL
ASPECT:
HUNT
FOR
THE
RELAXATION
EFFECT
......
201
8.2.1
FRANCOIS
BEDEAU:
RELAXATION
OSCILLATIONS
IN
THE
C.
R.
A. S
...............................................
201
8.2.2 PANC-TCHENG
KAO:
OSCILLATION
RELAXATIONS
IN
A
PIEZOELECTRIC
QUARTZ
........................................
203
8.2.3 ALFRED
FESSARD:
RELAXATION
OSCILLATIONS
IN
THE
NERVE
RHYTHMS
..............................................
204
8.2.4
ETIENNE
HOCHARD:
RELAXATION
OSCILLATIONS
IN
PHOTOELECTRIC
CELLS
.........................................
207
8.2.5
JEAN-LOUIS
ECK:
RELAXATION
OSCILLATIONS
IN
THE
GAS
TRIODES
......................................................
209
8.2.6
FRANCOIS-JOSEPH
BOURRIERES:
RELAXATION
OSCILLATIONS
IN
GARDEN
HOSES
..............................
211
8.2.7 LEON
AUGER:
RELAXATION
OSCILLATIONS
IN
PERCUSSION-REED
PIPES
.....................................
216
8.2.8
HIPPOLYTE
PARODI:
RELAXATION
OSCILLATIONS
IN
RUNNING
OF
TRAINS
...........................................
218
8.2.9
LUDWIG
HAMBURGER:
RELAXATION
OSCILLATIONS
IN
THE
ECONOMIC
CYCLES
...........................................
227
8.2.10
GEORGII F.
GAUSE:
LIMIT
CYCLES
IN
BIOLOGICAL
ASSOCIATIONS
.................................................
229
8.2.11
VLADIMIR
KOSTITZIN:
RELAXATION
OSCILLATIONS
IN BIOLOGICAL
ASSOCIATIONS
..................................
231
8.3
THESES
ON
NONLINEAR
OSCILLATIONS
IN FRANCE
(1936-1949)
.........
235
8.3.1
MORCHED-ZADEH S
THESIS
...................................
236
8.3.2
CASTAGNETTO S
THESIS
........................................
241
8.3.3
ABELE S THESIS
..............................................
245
8.3.4
MOUSSIEGT S
THESIS
.........................................
252
CONTENTS
XXIII
CONCLUSION
OF
PART 11
.............................................................
257
PART
III FROM
SELF-OSCILLATIONS
TO
QUASI-PERIODIC
OSCILLATIONS
9
THE POINCARE-LINDSTEDT
METHOD:
THE
INCOMPATIBILITY
WITH
RADIO ENGINEERING
..........................................................
265
9.1
THE
POINCARE-LINDSTEDT
METHOD
.....................................
265
9.2 FORCING
OR
COUPLING:
TOWARDS
QUASI-PERIODIC
OSCILLATIONS
.......
272
9.2.1 FORCED
OSCILLATORS
..........................................
272
9.2.2
COUPLED OSCILLATORS
.........................................
273
10
VAN DER POL S
METHOD: A
SIMPLE
AND
CLASSIC
SOLUTION
..................
275
10.1 THE SLOWLY VARYING
AMPLITUDES
METHOD
AND
THE
HYSTERESIS
PHENOMENON (I)
......................................................
275
10.2 THE MODE
COMPETITION
AND
HYSTERESIS
PHENOMENA
(II)
...........
277
10.3
THE
AUTOMATIC
SYNCHRONIZATION
AND
DRIVE
PHENOMENON
.........
281
10.4 THE FREQUENCY DEMULTIPLICATION
PHENOMENON
.....................
286
11
THE KRYLOV-BOGOLYUBOV
METHOD:
TOWARDS
A
NONLINEAR
MECHANICS
...
291
11.1
SLOWLY VARYING
AMPLITUDES
AND
PHASE
METHOD
....................
292
11.2 THE FIRST NOTE
IN
THE
C. R. A.
S.
OF
1932:
THE PROBLEM
OF
NONLINEAR MECHANICS
..............................................
296
11.3
THE
SECOND NOTE
IN
THE
CR.
A.
S.
OF
1932:
ON
THE
DRIVE
PHENOMENON
..........................................................
297
11.4 THE THIRD NOTE
IN
THE
C.
R. A.
S.
OF
1932:
ON
THE
DEMULTIPLICATION
PHENOMENON
......................................
299
11.5
THE
ARTICLE IN
THE
R.
G. S.
A.
OF
1933:
TOWARDS
A
NONLINEAR
MECHANICS
............................................................
300
11.6 THE NOTE IN
THE
C. R.
A. S.
OF
1934:
THE
SECOND
TOPOLOGICAL
EXCURSION ............................................................
302
11.7 THE NOTES
IN
THE
C. R. A.
S.
OF
1935:
TOWARDS
THE
THEORY
OF
DYNAMICAL
SYSTEMS
................................................
303
11.8 THE ARTICLE
IN
THE
ONDE
ELECTRIQUE
OF
1936:
THE
KRYLOV-BOGOLYUBOV
METHOD
..........................................
303
12
THE MANDEL SHTAM-PAPALEXI
SCHOOL:
THE
VAN
DER
POL-POINCARE METHOD
......................................................
305
12.1 ANDRONOV S
SECOND
NOTE
IN
THE
C. R.
A.
S.:
THE
CASE
OF
TWO
DEGREES
OF
FREEDOM
..................................................
305
12.2 MANDEL SHTAM-PAPALEXI S
ARTICLES:
THE
VAN
DER POL
-
POINCARE
METHOD
..................................................
308
13
FROM QUASI-PERIODIC
FUNCTIONS TO
RECURRENT
MOTIONS
.................
311
13.1 ERNEST ESCLANGON S
WORK:
ON
QUASI-PERIODIC
FUNCTIONS
..........
311
13.2 JEAN FAVARD S
WORK:
ON
ALMOST-PERIODIC
FUNCTIONS
...............
315
XXIV
CONTENTS
13.3 ARNAUD DENJOY S WORK:
CHARACTERISTICS
ON
THE
SURFACE
OF
THE
TORUS
..............................................................
317
13.4
GEORGE
BIRKHOFF S
WORK: THE TRANSITION
TOWARDS
DYNAMICAL
SYSTEMS
...................................................
321
13.5 MARIE
CHARPENTIER S WORK: BIRKHOFF S
LEGACY
......................
324
13.6 HERVE
FABRE: ON
THE
RECURRENT MOTIONS
............................
326
14 HADAMARD
AND
HIS
SEMINARY:
AT
THE
CROSSROADS
OF
IDEAS
AND
THEORIES
......................................................................
331
14.1 SPREADING
THE
LEGACY
OF
POINCARE
...................................
332
14.1.1
LESSONS
AT
THE
COLLEGE DE FRANCE
..........................
332
14.1.2 HADAMARD S
LECTURES ABROAD
..............................
333
14.2 THE SEMINARY PART
OF
HADAMARD S LECTURES
A
FEW
SUBJECTS
ADDRESSED
.............................................................
334
14.2.1 THE
WORK
OF
GEORGE BIRKHOFF
..............................
334
14.2.2 NONLINEAR
PHENOMENA
......................................
334
14.2.3 THE
PROBLEM
OF
THE
CHARACTERISTICS
ON
THE
SURFACE
OF
THE
TORUS
.................................................
336
CONCLUSION
OF
PART III
...........................................................
339
GENERAL CONCLUSION
..............................................................
341
BIBLIOGRAPHY
......................................................................
345
REFERENCES
.........................................................................
347
INDEX
NOMINUM
...................................................................
375
INDEX
...............................................................................
379
|
any_adam_object | 1 |
author | Ginoux, Jean-Marc 1969- |
author_GND | (DE-588)1048236684 |
author_facet | Ginoux, Jean-Marc 1969- |
author_role | aut |
author_sort | Ginoux, Jean-Marc 1969- |
author_variant | j m g jmg |
building | Verbundindex |
bvnumber | BV044317026 |
classification_rvk | AK 17350 SG 590 |
ctrlnum | (OCoLC)987591141 (DE-599)BVBBV044317026 |
dewey-full | 620.0042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.0042 |
dewey-search | 620.0042 |
dewey-sort | 3620.0042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Allgemeines Mathematik |
era | Geschichte 1880-1940 gnd |
era_facet | Geschichte 1880-1940 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02285nam a2200601zcb4500</leader><controlfield tag="001">BV044317026</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231207 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170518s2017 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319552385</subfield><subfield code="9">978-3-319-55238-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)987591141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044317026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-210</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.0042</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">HIST</subfield><subfield code="q">DE-210</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AK 17350</subfield><subfield code="0">(DE-625)2536:1800</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ginoux, Jean-Marc</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1048236684</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">History of Nonlinear Oscillations Theory in France (1880-1940)</subfield><subfield code="c">Jean-Marc Ginoux</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxvii, 381 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Archimedes</subfield><subfield code="v">Volume 49</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 347-374</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1880-1940</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophical and Historical Foundations of Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Frankreich</subfield><subfield code="0">(DE-588)4018145-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Frankreich</subfield><subfield code="0">(DE-588)4018145-5</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Geschichte 1880-1940</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, eBook</subfield><subfield code="z">978-3-319-55239-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Archimedes</subfield><subfield code="v">49</subfield><subfield code="w">(DE-604)BV021292753</subfield><subfield code="9">49</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung Deutsches Museum</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029720574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029720574</subfield></datafield></record></collection> |
geographic | Frankreich (DE-588)4018145-5 gnd |
geographic_facet | Frankreich |
id | DE-604.BV044317026 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:59:42Z |
institution | BVB |
isbn | 9783319552385 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029720574 |
oclc_num | 987591141 |
open_access_boolean | |
owner | DE-83 DE-210 |
owner_facet | DE-83 DE-210 |
physical | xxxvii, 381 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Springer |
record_format | marc |
series | Archimedes |
series2 | Archimedes |
spellingShingle | Ginoux, Jean-Marc 1969- History of Nonlinear Oscillations Theory in France (1880-1940) Archimedes Engineering Mathematics History Engineering design Engineering Design Philosophical and Historical Foundations of Science History of Mathematical Sciences Geschichte Ingenieurwissenschaften Mathematik Theorie (DE-588)4059787-8 gnd Nichtlineare Schwingung (DE-588)4042100-4 gnd |
subject_GND | (DE-588)4059787-8 (DE-588)4042100-4 (DE-588)4018145-5 |
title | History of Nonlinear Oscillations Theory in France (1880-1940) |
title_auth | History of Nonlinear Oscillations Theory in France (1880-1940) |
title_exact_search | History of Nonlinear Oscillations Theory in France (1880-1940) |
title_full | History of Nonlinear Oscillations Theory in France (1880-1940) Jean-Marc Ginoux |
title_fullStr | History of Nonlinear Oscillations Theory in France (1880-1940) Jean-Marc Ginoux |
title_full_unstemmed | History of Nonlinear Oscillations Theory in France (1880-1940) Jean-Marc Ginoux |
title_short | History of Nonlinear Oscillations Theory in France (1880-1940) |
title_sort | history of nonlinear oscillations theory in france 1880 1940 |
topic | Engineering Mathematics History Engineering design Engineering Design Philosophical and Historical Foundations of Science History of Mathematical Sciences Geschichte Ingenieurwissenschaften Mathematik Theorie (DE-588)4059787-8 gnd Nichtlineare Schwingung (DE-588)4042100-4 gnd |
topic_facet | Engineering Mathematics History Engineering design Engineering Design Philosophical and Historical Foundations of Science History of Mathematical Sciences Geschichte Ingenieurwissenschaften Mathematik Theorie Nichtlineare Schwingung Frankreich |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029720574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021292753 |
work_keys_str_mv | AT ginouxjeanmarc historyofnonlinearoscillationstheoryinfrance18801940 |