Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Introduction to machine learni...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Müller, Andreas Christian (VerfasserIn), Guido, Sarah (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Ausgabe:First edition
Schlagwörter:
Python > Programmiersprache
Maschinelles Lernen
Links:https://ebookcentral.proquest.com/lib/th-brandenburg/detail.action?docID=4698164
https://ebookcentral.proquest.com/lib/b-tu/detail.action?docID=4698164
http://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4698164
https://ebookcentral.proquest.com/lib/hs-neuulm/detail.action?docID=4698164
https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164
https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164
https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=4698164
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029357466&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:1 Online-Ressource (ix, 384 Seiten) Illustrationen
ISBN:9781449369903
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV043948559
003 DE-604
005 20240917
007 cr|uuu---uuuuu
008 161207s2017 xx a||| o|||| 00||| eng d
020 |a 9781449369903  |c Online  |9 978-1-449-36990-3 
035 |a (ZDB-30-PQE)9781449369903 
035 |a (OCoLC)967907821 
035 |a (DE-599)BVBBV043948559 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-863  |a DE-862  |a DE-1050  |a DE-706  |a DE-1049  |a DE-522  |a DE-83  |a DE-634 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Müller, Andreas Christian  |0 (DE-588)1060129469  |4 aut 
245 1 0 |a Introduction to machine learning with Python  |b a guide for data scientists  |c Andreas C. Müller and Sarah Guido 
250 |a First edition 
264 0 |a Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo  |b O'Reilly  |c 2017 
300 |a 1 Online-Ressource (ix, 384 Seiten)  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 |5 DE-604 
700 1 |a Guido, Sarah  |0 (DE-588)1117052265  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-449-36941-5  |w (DE-604)BV043292304 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029357466&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
912 |a ZDB-30-PQE 
912 |a ZDB-4-NLEBK 
912 |a ebook 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029357466 
966 e |u https://ebookcentral.proquest.com/lib/th-brandenburg/detail.action?docID=4698164  |l DE-522  |p ZDB-30-PQE  |q BFB_Kauf  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/b-tu/detail.action?docID=4698164  |l DE-634  |p ZDB-30-PQE  |q BTU_Kauf  |x Aggregator  |3 Volltext 
966 e |u http://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4698164  |l DE-1050  |p ZDB-30-PQE  |q FHD01_PQE_Kauf  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/hs-neuulm/detail.action?docID=4698164  |l DE-1049  |p ZDB-30-PQE  |q ZDB-30-PQE_EK  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164  |l DE-863  |p ZDB-30-PQE  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164  |l DE-862  |p ZDB-30-PQE  |x Aggregator  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=4698164  |l DE-706  |p ZDB-30-PQE  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819322802662014976
adam_text Titel: Introduction to machine learning with Python Autor: Müller, Andreas Christian Jahr: 2016 Table of Contents Preface.......................................................................vii 1. Introduction................................................................ 1 Why Machine Learning? 1 Problems Machine Learning Can Solve 2 Knowing Your Task and Knowing Your Data 4 Why Python? 5 scikit-learn 5 Installing scikit-learn 6 Essential Libraries and Tools 7 Jupyter Notebook 7 NumPy 7 SciPy 8 matplotlib 9 pandas 10 mglearn 11 Python 2 Versus Python 3 12 Versions Used in this Book 12 A First Application: Classifying Iris Species 13 Meet the Data 14 Measuring Success: Training and Testing Data 17 First Things First: Look at Your Data 19 Building Your First Model: k-Nearest Neighbors 20 Making Predictions 22 Evaluating the Model 22 Summary and Outlook 23 2. Supervised Learning........................................................ 25 Classification and Regression 25 Generalization, Overfitting, and Underfitting 26 Relation of Model Complexity to Dataset Size 29 Supervised Machine Learning Algorithms 29 Some Sample Datasets 30 k-Nearest Neighbors 35 Linear Models 45 Naive Bayes Classifiers 68 Decision Trees 70 Ensembles of Decision Trees 83 Kernelized Support Vector Machines 92 Neural Networks (Deep Learning) 104 Uncertainty Estimates from Classifiers 119 The Decision Function 120 Predicting Probabilities 122 Uncertainty in Multiclass Classification 124 Summary and Outlook 127 3. Unsupervised Learning and Preprocessing.................................... 131 Types of Unsupervised Learning 131 Challenges in Unsupervised Learning 132 Preprocessing and Scaling 132 Different Kinds of Preprocessing 133 Applying Data Transformations 134 Scaling Training and Test Data the Same Way 136 The Effect of Preprocessing on Supervised Learning 138 Dimensionality Reduction, Feature Extraction, and Manifold Learning 140 Principal Component Analysis (PCA) 140 Non-Negative Matrix Factorization (NMF) 156 Manifold Learning with t-SNE 163 Clustering 168 k-Means Clustering 168 Agglomerative Clustering 182 DBSCAN 187 Comparing and Evaluating Clustering Algorithms 191 Summary of Clustering Methods 207 Summary and Outlook 208 4. Representing Data and Engineering Features..................................211 Categorical Variables 212 One-Hot-Encoding (Dummy Variables) 213 Numbers Can Encode Categoricals 218 Binning, Discretization, Linear Models, and Trees 220 Interactions and Polynomials 224 Univariate Nonlinear Transformations 232 Automatic Feature Selection 236 Univariate Statistics 236 Model-Based Feature Selection 238 Iterative Feature Selection 240 Utilizing Expert Knowledge 242 Summary and Outlook 250 5. Model Evaluation and Improvement......................................... 251 Cross-Validation 252 Cross-Validation in scikit-learn 253 Benefitsof Cross-Validation 254 Stratified k-Fold Cross-Validation and Other Strategies 254 Grid Search 260 Simple Grid Search 261 The Danger of Overfitting the Parameters and the Validation Set 261 Grid Search with Cross-Validation 263 Evaluation Metrics and Scoring 275 Keep the End Goal in Mind 275 Metrics for Binary Classification 276 Metrics for Multiclass Classification 296 Regression Metrics 299 Using Evaluation Metrics in Model Selection 300 Summary and Outlook 302 6. AlgorithmChainsandPipelines............................................. 305 Parameter Selection with Preprocessing 306 Building Pipelines 308 Using Pipelines in Grid Searches 309 The General Pipeline Interface 312 Convenient Pipeline Creation with make_pipeline 313 Accessing Step Attributes 314 Accessing Attributes in a Grid-Searched Pipeline 315 Grid-Searching Preprocessing Steps and Model Parameters 317 Grid-Searching Which Model To Use 319 Summary and Outlook 320 7. Working with Text Data.................................................... 323 Types of Data Represented as Strings 323 Example Application: Sentiment Analysis of Movie Reviews 325 Representing Text Data as a Bag of Wörds 327 Applying Bag-of-Words to a Toy Dataset 329 Bag-of-Wörds for Movie Reviews 330 Stopwords 334 Rescaling the Data with tf-idf 336 Investigating Model Coefficients 338 Bag-of-Words with More Than One Word (n-Grams) 339 Advanced Tokenization, Stemming, and Lemmatization 344 Topic Modeling and Document Clustering 347 Latent Dirichlet Allocation 348 Summary and Outlook 355 8. Wrapping Up............................................................. 357 Approaching a Machine Learning Problem 357 Humans in the Loop 358 From Prototype to Production 359 Testing Production Systems 359 Building Your Own Estimator 360 Where to Go from Here 361 Theory 361 Other Machine Learning Frameworks and Packages 362 Ranking, Recommender Systems, and Other Kinds of Learning 363 Probabilistic Modeling, Inference, and Probabilistic Programming 363 Neural Networks 364 Scaling to Larger Datasets 364 Honing Your Skills 365 Conclusion 366 Index....................................................................... 367
any_adam_object 1
author Müller, Andreas Christian
Guido, Sarah
author_GND (DE-588)1060129469
(DE-588)1117052265
author_facet Müller, Andreas Christian
Guido, Sarah
author_role aut
aut
author_sort Müller, Andreas Christian
author_variant a c m ac acm
s g sg
building Verbundindex
bvnumber BV043948559
classification_rvk ST 250
ST 300
collection ZDB-30-PQE
ZDB-4-NLEBK
ebook
ctrlnum (ZDB-30-PQE)9781449369903
(OCoLC)967907821
(DE-599)BVBBV043948559
discipline Informatik
edition First edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02827nam a2200517 c 4500</leader><controlfield tag="001">BV043948559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240917 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161207s2017 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781449369903</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-449-36990-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)9781449369903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967907821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043948559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Andreas Christian</subfield><subfield code="0">(DE-588)1060129469</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to machine learning with Python</subfield><subfield code="b">a guide for data scientists</subfield><subfield code="c">Andreas C. Müller and Sarah Guido</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="0"><subfield code="a">Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 384 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guido, Sarah</subfield><subfield code="0">(DE-588)1117052265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-449-36941-5</subfield><subfield code="w">(DE-604)BV043292304</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029357466&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029357466</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-brandenburg/detail.action?docID=4698164</subfield><subfield code="l">DE-522</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BFB_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/b-tu/detail.action?docID=4698164</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BTU_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=4698164</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hs-neuulm/detail.action?docID=4698164</subfield><subfield code="l">DE-1049</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">ZDB-30-PQE_EK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/reader.action?docID=4698164</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=4698164</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043948559
illustrated Illustrated
indexdate 2024-12-20T17:49:30Z
institution BVB
isbn 9781449369903
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029357466
oclc_num 967907821
open_access_boolean
owner DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
DE-1050
DE-706
DE-1049
DE-522
DE-83
DE-634
owner_facet DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
DE-1050
DE-706
DE-1049
DE-522
DE-83
DE-634
physical 1 Online-Ressource (ix, 384 Seiten) Illustrationen
psigel ZDB-30-PQE
ZDB-4-NLEBK
ebook
ZDB-30-PQE BFB_Kauf
ZDB-30-PQE BTU_Kauf
ZDB-30-PQE FHD01_PQE_Kauf
ZDB-30-PQE ZDB-30-PQE_EK
publishDateSearch 2017
publishDateSort 2017
record_format marc
spellingShingle Müller, Andreas Christian
Guido, Sarah
Introduction to machine learning with Python a guide for data scientists
Python Programmiersprache (DE-588)4434275-5 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
subject_GND (DE-588)4434275-5
(DE-588)4193754-5
title Introduction to machine learning with Python a guide for data scientists
title_auth Introduction to machine learning with Python a guide for data scientists
title_exact_search Introduction to machine learning with Python a guide for data scientists
title_full Introduction to machine learning with Python a guide for data scientists Andreas C. Müller and Sarah Guido
title_fullStr Introduction to machine learning with Python a guide for data scientists Andreas C. Müller and Sarah Guido
title_full_unstemmed Introduction to machine learning with Python a guide for data scientists Andreas C. Müller and Sarah Guido
title_short Introduction to machine learning with Python
title_sort introduction to machine learning with python a guide for data scientists
title_sub a guide for data scientists
topic Python Programmiersprache (DE-588)4434275-5 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
topic_facet Python Programmiersprache
Maschinelles Lernen
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029357466&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT mullerandreaschristian introductiontomachinelearningwithpythonaguidefordatascientists
AT guidosarah introductiontomachinelearningwithpythonaguidefordatascientists
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt