Greedy approximation:
This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two ty...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
20 |
Schlagwörter: | |
Links: | https://doi.org/10.1017/CBO9780511762291 https://doi.org/10.1017/CBO9780511762291 https://doi.org/10.1017/CBO9780511762291 |
Zusammenfassung: | This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Umfang: | 1 online resource (xiv, 418 pages) |
ISBN: | 9780511762291 |
DOI: | 10.1017/CBO9780511762291 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940778 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 xx o|||| 00||| eng d | ||
020 | |a 9780511762291 |c Online |9 978-0-511-76229-1 | ||
024 | 7 | |a 10.1017/CBO9780511762291 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511762291 | ||
035 | |a (OCoLC)992880439 | ||
035 | |a (DE-599)BVBBV043940778 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 518/.5 |2 23 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Temlyakov, Vladimir |d 1953- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Greedy approximation |c Vladimir Temlyakov |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xiv, 418 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 20 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Greedy approximation with respect to bases -- 2. Greedy approximation with respect to dictionaries: Hilbert spaces -- 3. Entropy -- 4. Approximation in learning theory -- 5. Approximation in compressed sensing -- 6. Greedy approximation with respect to dictionaries: Banach spaces | |
520 | |a This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research | ||
650 | 4 | |a Approximation theory | |
650 | 4 | |a Compressed sensing (Telecommunication) | |
650 | 0 | 7 | |a Nichtlineare Approximation |0 (DE-588)4127922-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Greedy-Algorithmus |0 (DE-588)4331446-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Greedy-Algorithmus |0 (DE-588)4331446-6 |D s |
689 | 0 | 1 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |D s |
689 | 0 | 2 | |a Nichtlineare Approximation |0 (DE-588)4127922-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-00337-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511762291 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349748 | |
966 | e | |u https://doi.org/10.1017/CBO9780511762291 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511762291 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982566276890624 |
---|---|
any_adam_object | |
author | Temlyakov, Vladimir 1953- |
author_facet | Temlyakov, Vladimir 1953- |
author_role | aut |
author_sort | Temlyakov, Vladimir 1953- |
author_variant | v t vt |
building | Verbundindex |
bvnumber | BV043940778 |
classification_rvk | SK 470 |
collection | ZDB-20-CBO |
contents | 1. Greedy approximation with respect to bases -- 2. Greedy approximation with respect to dictionaries: Hilbert spaces -- 3. Entropy -- 4. Approximation in learning theory -- 5. Approximation in compressed sensing -- 6. Greedy approximation with respect to dictionaries: Banach spaces |
ctrlnum | (ZDB-20-CBO)CR9780511762291 (OCoLC)992880439 (DE-599)BVBBV043940778 |
dewey-full | 518/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518/.5 |
dewey-search | 518/.5 |
dewey-sort | 3518 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511762291 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03410nam a2200529zcb4500</leader><controlfield tag="001">BV043940778</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511762291</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-76229-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511762291</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511762291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992880439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940778</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Temlyakov, Vladimir</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Greedy approximation</subfield><subfield code="c">Vladimir Temlyakov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 418 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">20</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Greedy approximation with respect to bases -- 2. Greedy approximation with respect to dictionaries: Hilbert spaces -- 3. Entropy -- 4. Approximation in learning theory -- 5. Approximation in compressed sensing -- 6. Greedy approximation with respect to dictionaries: Banach spaces</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressed sensing (Telecommunication)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Approximation</subfield><subfield code="0">(DE-588)4127922-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Greedy-Algorithmus</subfield><subfield code="0">(DE-588)4331446-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Greedy-Algorithmus</subfield><subfield code="0">(DE-588)4331446-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlineare Approximation</subfield><subfield code="0">(DE-588)4127922-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-00337-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511762291</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349748</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762291</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511762291</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940778 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:49:15Z |
institution | BVB |
isbn | 9780511762291 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349748 |
oclc_num | 992880439 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 418 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Temlyakov, Vladimir 1953- Verfasser aut Greedy approximation Vladimir Temlyakov Cambridge Cambridge University Press 2011 1 online resource (xiv, 418 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 20 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Greedy approximation with respect to bases -- 2. Greedy approximation with respect to dictionaries: Hilbert spaces -- 3. Entropy -- 4. Approximation in learning theory -- 5. Approximation in compressed sensing -- 6. Greedy approximation with respect to dictionaries: Banach spaces This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research Approximation theory Compressed sensing (Telecommunication) Nichtlineare Approximation (DE-588)4127922-0 gnd rswk-swf Approximationsalgorithmus (DE-588)4500954-5 gnd rswk-swf Greedy-Algorithmus (DE-588)4331446-6 gnd rswk-swf Greedy-Algorithmus (DE-588)4331446-6 s Approximationsalgorithmus (DE-588)4500954-5 s Nichtlineare Approximation (DE-588)4127922-0 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-107-00337-8 https://doi.org/10.1017/CBO9780511762291 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Temlyakov, Vladimir 1953- Greedy approximation 1. Greedy approximation with respect to bases -- 2. Greedy approximation with respect to dictionaries: Hilbert spaces -- 3. Entropy -- 4. Approximation in learning theory -- 5. Approximation in compressed sensing -- 6. Greedy approximation with respect to dictionaries: Banach spaces Approximation theory Compressed sensing (Telecommunication) Nichtlineare Approximation (DE-588)4127922-0 gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Greedy-Algorithmus (DE-588)4331446-6 gnd |
subject_GND | (DE-588)4127922-0 (DE-588)4500954-5 (DE-588)4331446-6 |
title | Greedy approximation |
title_auth | Greedy approximation |
title_exact_search | Greedy approximation |
title_full | Greedy approximation Vladimir Temlyakov |
title_fullStr | Greedy approximation Vladimir Temlyakov |
title_full_unstemmed | Greedy approximation Vladimir Temlyakov |
title_short | Greedy approximation |
title_sort | greedy approximation |
topic | Approximation theory Compressed sensing (Telecommunication) Nichtlineare Approximation (DE-588)4127922-0 gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Greedy-Algorithmus (DE-588)4331446-6 gnd |
topic_facet | Approximation theory Compressed sensing (Telecommunication) Nichtlineare Approximation Approximationsalgorithmus Greedy-Algorithmus |
url | https://doi.org/10.1017/CBO9780511762291 |
work_keys_str_mv | AT temlyakovvladimir greedyapproximation |