A theory of case-based decisions:
Gilboa and Schmeidler provide a paradigm for modelling decision making under uncertainty. Unlike the classical theory of expected utility maximization, case-based decision theory does not assume that decision makers know the possible 'states of the world' or the outcomes, let alone the dec...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/CBO9780511493539 https://doi.org/10.1017/CBO9780511493539 https://doi.org/10.1017/CBO9780511493539 |
Zusammenfassung: | Gilboa and Schmeidler provide a paradigm for modelling decision making under uncertainty. Unlike the classical theory of expected utility maximization, case-based decision theory does not assume that decision makers know the possible 'states of the world' or the outcomes, let alone the decision matrix attaching outcomes to act-state pairs. Case-based decision theory suggests that people make decisions by analogies to past cases: they tend to choose acts that performed well in the past in similar situations, and to avoid acts that performed poorly. It is an alternative to expected utility theory when both states of the world and probabilities are neither given in the problem nor can be easily constructed. The authors describe the general theory and its relationship to planning, repeated choice problems, inductive inference, and learning; they highlight its mathematical and philosophical foundations and compare it with expected utility theory as well as with rule-based systems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Umfang: | 1 online resource (x, 199 pages) |
ISBN: | 9780511493539 |
DOI: | 10.1017/CBO9780511493539 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043928705 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2001 xx o|||| 00||| eng d | ||
020 | |a 9780511493539 |c Online |9 978-0-511-49353-9 | ||
024 | 7 | |a 10.1017/CBO9780511493539 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511493539 | ||
035 | |a (OCoLC)704452014 | ||
035 | |a (DE-599)BVBBV043928705 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 658.4/033 |2 21 | |
084 | |a QC 020 |0 (DE-625)141237: |2 rvk | ||
100 | 1 | |a Gilboa, Itzhak |e Verfasser |4 aut | |
245 | 1 | 0 | |a A theory of case-based decisions |c Itzhak Gilboa and David Schmeidler |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (x, 199 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Prologue. 1. The scope of this book. 2. Meta-theoretical vocabulary. 3. Meta-theoretical prejudices -- 2. Decision rules. 4. Elementary formula and interpretations. 5. Variations and generalizations. 6. CBDT as a behaviorist theory. 7. Case-based prediction -- 3. Axiomatic derivation. 8. Highlights. 9. Model and result. 10. Discussion of the axioms. 11. Proofs -- 4. Conceptual foundations. 12. CBDT and expected utility theory. 13. CBDT and rule-based systems -- 5. Planning. 14. Representation and evaluation of plans. 15. Axiomatic derivation -- 6. Repeated choice. 16. Cumulative utility maximization. 17. The potential -- 7. Learning and induction. 18. Learning to maximize expected payoff. 19. Learning the similarity function. 20. Two views of induction: CBDT and simplicism | |
520 | |a Gilboa and Schmeidler provide a paradigm for modelling decision making under uncertainty. Unlike the classical theory of expected utility maximization, case-based decision theory does not assume that decision makers know the possible 'states of the world' or the outcomes, let alone the decision matrix attaching outcomes to act-state pairs. Case-based decision theory suggests that people make decisions by analogies to past cases: they tend to choose acts that performed well in the past in similar situations, and to avoid acts that performed poorly. It is an alternative to expected utility theory when both states of the world and probabilities are neither given in the problem nor can be easily constructed. The authors describe the general theory and its relationship to planning, repeated choice problems, inductive inference, and learning; they highlight its mathematical and philosophical foundations and compare it with expected utility theory as well as with rule-based systems | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Decision making / Mathematical models | |
650 | 0 | 7 | |a Fallbasiertes Schließen |0 (DE-588)4363288-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Entscheidungstheorie |0 (DE-588)4077850-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |D s |
689 | 0 | 1 | |a Fallbasiertes Schließen |0 (DE-588)4363288-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Statistische Entscheidungstheorie |0 (DE-588)4077850-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Schmeidler, David |d 1939- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-00311-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-80234-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511493539 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029337784 | |
966 | e | |u https://doi.org/10.1017/CBO9780511493539 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511493539 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982543822684160 |
---|---|
any_adam_object | |
author | Gilboa, Itzhak |
author_facet | Gilboa, Itzhak |
author_role | aut |
author_sort | Gilboa, Itzhak |
author_variant | i g ig |
building | Verbundindex |
bvnumber | BV043928705 |
classification_rvk | QC 020 |
collection | ZDB-20-CBO |
contents | 1. Prologue. 1. The scope of this book. 2. Meta-theoretical vocabulary. 3. Meta-theoretical prejudices -- 2. Decision rules. 4. Elementary formula and interpretations. 5. Variations and generalizations. 6. CBDT as a behaviorist theory. 7. Case-based prediction -- 3. Axiomatic derivation. 8. Highlights. 9. Model and result. 10. Discussion of the axioms. 11. Proofs -- 4. Conceptual foundations. 12. CBDT and expected utility theory. 13. CBDT and rule-based systems -- 5. Planning. 14. Representation and evaluation of plans. 15. Axiomatic derivation -- 6. Repeated choice. 16. Cumulative utility maximization. 17. The potential -- 7. Learning and induction. 18. Learning to maximize expected payoff. 19. Learning the similarity function. 20. Two views of induction: CBDT and simplicism |
ctrlnum | (ZDB-20-CBO)CR9780511493539 (OCoLC)704452014 (DE-599)BVBBV043928705 |
dewey-full | 658.4/033 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4/033 |
dewey-search | 658.4/033 |
dewey-sort | 3658.4 233 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511493539 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04121nam a2200565zc 4500</leader><controlfield tag="001">BV043928705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511493539</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-49353-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511493539</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511493539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704452014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043928705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4/033</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 020</subfield><subfield code="0">(DE-625)141237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilboa, Itzhak</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A theory of case-based decisions</subfield><subfield code="c">Itzhak Gilboa and David Schmeidler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 199 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Prologue. 1. The scope of this book. 2. Meta-theoretical vocabulary. 3. Meta-theoretical prejudices -- 2. Decision rules. 4. Elementary formula and interpretations. 5. Variations and generalizations. 6. CBDT as a behaviorist theory. 7. Case-based prediction -- 3. Axiomatic derivation. 8. Highlights. 9. Model and result. 10. Discussion of the axioms. 11. Proofs -- 4. Conceptual foundations. 12. CBDT and expected utility theory. 13. CBDT and rule-based systems -- 5. Planning. 14. Representation and evaluation of plans. 15. Axiomatic derivation -- 6. Repeated choice. 16. Cumulative utility maximization. 17. The potential -- 7. Learning and induction. 18. Learning to maximize expected payoff. 19. Learning the similarity function. 20. Two views of induction: CBDT and simplicism</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gilboa and Schmeidler provide a paradigm for modelling decision making under uncertainty. Unlike the classical theory of expected utility maximization, case-based decision theory does not assume that decision makers know the possible 'states of the world' or the outcomes, let alone the decision matrix attaching outcomes to act-state pairs. Case-based decision theory suggests that people make decisions by analogies to past cases: they tend to choose acts that performed well in the past in similar situations, and to avoid acts that performed poorly. It is an alternative to expected utility theory when both states of the world and probabilities are neither given in the problem nor can be easily constructed. The authors describe the general theory and its relationship to planning, repeated choice problems, inductive inference, and learning; they highlight its mathematical and philosophical foundations and compare it with expected utility theory as well as with rule-based systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fallbasiertes Schließen</subfield><subfield code="0">(DE-588)4363288-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Entscheidungstheorie</subfield><subfield code="0">(DE-588)4077850-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fallbasiertes Schließen</subfield><subfield code="0">(DE-588)4363288-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Entscheidungstheorie</subfield><subfield code="0">(DE-588)4077850-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmeidler, David</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-00311-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-80234-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511493539</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029337784</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511493539</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511493539</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043928705 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:48:53Z |
institution | BVB |
isbn | 9780511493539 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029337784 |
oclc_num | 704452014 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 online resource (x, 199 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gilboa, Itzhak Verfasser aut A theory of case-based decisions Itzhak Gilboa and David Schmeidler Cambridge Cambridge University Press 2001 1 online resource (x, 199 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Prologue. 1. The scope of this book. 2. Meta-theoretical vocabulary. 3. Meta-theoretical prejudices -- 2. Decision rules. 4. Elementary formula and interpretations. 5. Variations and generalizations. 6. CBDT as a behaviorist theory. 7. Case-based prediction -- 3. Axiomatic derivation. 8. Highlights. 9. Model and result. 10. Discussion of the axioms. 11. Proofs -- 4. Conceptual foundations. 12. CBDT and expected utility theory. 13. CBDT and rule-based systems -- 5. Planning. 14. Representation and evaluation of plans. 15. Axiomatic derivation -- 6. Repeated choice. 16. Cumulative utility maximization. 17. The potential -- 7. Learning and induction. 18. Learning to maximize expected payoff. 19. Learning the similarity function. 20. Two views of induction: CBDT and simplicism Gilboa and Schmeidler provide a paradigm for modelling decision making under uncertainty. Unlike the classical theory of expected utility maximization, case-based decision theory does not assume that decision makers know the possible 'states of the world' or the outcomes, let alone the decision matrix attaching outcomes to act-state pairs. Case-based decision theory suggests that people make decisions by analogies to past cases: they tend to choose acts that performed well in the past in similar situations, and to avoid acts that performed poorly. It is an alternative to expected utility theory when both states of the world and probabilities are neither given in the problem nor can be easily constructed. The authors describe the general theory and its relationship to planning, repeated choice problems, inductive inference, and learning; they highlight its mathematical and philosophical foundations and compare it with expected utility theory as well as with rule-based systems Mathematisches Modell Decision making / Mathematical models Fallbasiertes Schließen (DE-588)4363288-9 gnd rswk-swf Entscheidungstheorie (DE-588)4138606-1 gnd rswk-swf Statistische Entscheidungstheorie (DE-588)4077850-2 gnd rswk-swf Entscheidungstheorie (DE-588)4138606-1 s Fallbasiertes Schließen (DE-588)4363288-9 s 1\p DE-604 Statistische Entscheidungstheorie (DE-588)4077850-2 s 2\p DE-604 Schmeidler, David 1939- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-00311-7 Erscheint auch als Druckausgabe 978-0-521-80234-5 https://doi.org/10.1017/CBO9780511493539 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gilboa, Itzhak A theory of case-based decisions 1. Prologue. 1. The scope of this book. 2. Meta-theoretical vocabulary. 3. Meta-theoretical prejudices -- 2. Decision rules. 4. Elementary formula and interpretations. 5. Variations and generalizations. 6. CBDT as a behaviorist theory. 7. Case-based prediction -- 3. Axiomatic derivation. 8. Highlights. 9. Model and result. 10. Discussion of the axioms. 11. Proofs -- 4. Conceptual foundations. 12. CBDT and expected utility theory. 13. CBDT and rule-based systems -- 5. Planning. 14. Representation and evaluation of plans. 15. Axiomatic derivation -- 6. Repeated choice. 16. Cumulative utility maximization. 17. The potential -- 7. Learning and induction. 18. Learning to maximize expected payoff. 19. Learning the similarity function. 20. Two views of induction: CBDT and simplicism Mathematisches Modell Decision making / Mathematical models Fallbasiertes Schließen (DE-588)4363288-9 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Statistische Entscheidungstheorie (DE-588)4077850-2 gnd |
subject_GND | (DE-588)4363288-9 (DE-588)4138606-1 (DE-588)4077850-2 |
title | A theory of case-based decisions |
title_auth | A theory of case-based decisions |
title_exact_search | A theory of case-based decisions |
title_full | A theory of case-based decisions Itzhak Gilboa and David Schmeidler |
title_fullStr | A theory of case-based decisions Itzhak Gilboa and David Schmeidler |
title_full_unstemmed | A theory of case-based decisions Itzhak Gilboa and David Schmeidler |
title_short | A theory of case-based decisions |
title_sort | a theory of case based decisions |
topic | Mathematisches Modell Decision making / Mathematical models Fallbasiertes Schließen (DE-588)4363288-9 gnd Entscheidungstheorie (DE-588)4138606-1 gnd Statistische Entscheidungstheorie (DE-588)4077850-2 gnd |
topic_facet | Mathematisches Modell Decision making / Mathematical models Fallbasiertes Schließen Entscheidungstheorie Statistische Entscheidungstheorie |
url | https://doi.org/10.1017/CBO9780511493539 |
work_keys_str_mv | AT gilboaitzhak atheoryofcasebaseddecisions AT schmeidlerdavid atheoryofcasebaseddecisions |