Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken
John Wiley & Sons, Inc.
2016
|
Schlagwörter: | |
Links: | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 |
Zusammenfassung: | "The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"-- |
Umfang: | 1 online resource (xii, 273 pages) |
ISBN: | 111907309X 1119073103 1119073200 9781119073093 9781119073109 9781119073208 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043864321 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161107s2016 xx o|||| 00||| eng d | ||
020 | |a 111907309X |9 1-119-07309-X | ||
020 | |a 1119073103 |c Online |9 1-119-07310-3 | ||
020 | |a 1119073200 |9 1-119-07320-0 | ||
020 | |a 9781119073093 |9 978-1-119-07309-3 | ||
020 | |a 9781119073109 |9 978-1-119-07310-9 | ||
020 | |a 9781119073208 |9 978-1-119-07320-8 | ||
035 | |a (ZDB-35-WIC)ocn945582928 | ||
035 | |a (OCoLC)965787109 | ||
035 | |a (DE-599)BVBBV043864321 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-861 | ||
082 | 0 | |a 621.381/325 | |
100 | 1 | |a Jarry, Pierre |d 1946- |4 aut | |
245 | 1 | 0 | |a Microwave amplifier and active circuit design using the real frequency technique |c Pierre Jarry and Jacques N. Beneat |
264 | 1 | |a Hoboken |b John Wiley & Sons, Inc. |c 2016 | |
300 | |a 1 online resource (xii, 273 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Includes bibliographical references and index | |
505 | 8 | |a -- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- | |
505 | 8 | |a - 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg-Marquardt-More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- | |
505 | 8 | |a - 2.10 Realizations 59 | |
505 | 8 | |a 2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2-8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15-1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15-1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925-6.425 GHz Hybrid Amplifier 96 -- References 99 -- | |
505 | 8 | |a - 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- | |
505 | 8 | |a - 6.2 Multistage Power Amplifier Representation 152 | |
505 | 8 | |a 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- | |
505 | 8 | |a - 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg-Marquardt-More Optimization Algorithm 239 -- | |
505 | 8 | |a - Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253 | |
520 | |a "The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"-- | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Microwaves |2 bisacsh | |
650 | 7 | |a Electric filters, Active / Design and construction |2 fast | |
650 | 7 | |a Microwave amplifiers / Design and construction |2 fast | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Mechanical |2 bisacsh | |
650 | 4 | |a Microwave amplifiers / Design and construction | |
650 | 4 | |a Electric filters, Active / Design and construction | |
650 | 0 | 7 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochfrequenz |0 (DE-588)4160130-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gigahertzbereich |0 (DE-588)4379233-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetismus |0 (DE-588)4014306-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |D s |
689 | 0 | 1 | |a Elektromagnetismus |0 (DE-588)4014306-5 |D s |
689 | 0 | 2 | |a Hochfrequenz |0 (DE-588)4160130-0 |D s |
689 | 0 | 3 | |a Gigahertzbereich |0 (DE-588)4379233-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Beneat, Jacques |d 1964- |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-118-98508-3 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029274355 | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 |l DE-861 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 |l DE-473 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982434448867328 |
---|---|
any_adam_object | |
author | Jarry, Pierre 1946- Beneat, Jacques 1964- |
author_facet | Jarry, Pierre 1946- Beneat, Jacques 1964- |
author_role | aut aut |
author_sort | Jarry, Pierre 1946- |
author_variant | p j pj j b jb |
building | Verbundindex |
bvnumber | BV043864321 |
collection | ZDB-35-WIC |
contents | Includes bibliographical references and index -- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- - 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg-Marquardt-More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- - 2.10 Realizations 59 2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2-8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15-1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15-1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925-6.425 GHz Hybrid Amplifier 96 -- References 99 -- - 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- - 6.2 Multistage Power Amplifier Representation 152 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- - 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg-Marquardt-More Optimization Algorithm 239 -- - Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253 |
ctrlnum | (ZDB-35-WIC)ocn945582928 (OCoLC)965787109 (DE-599)BVBBV043864321 |
dewey-full | 621.381/325 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381/325 |
dewey-search | 621.381/325 |
dewey-sort | 3621.381 3325 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09584nam a2200733zc 4500</leader><controlfield tag="001">BV043864321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161107s2016 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111907309X</subfield><subfield code="9">1-119-07309-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119073103</subfield><subfield code="c">Online</subfield><subfield code="9">1-119-07310-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119073200</subfield><subfield code="9">1-119-07320-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119073093</subfield><subfield code="9">978-1-119-07309-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119073109</subfield><subfield code="9">978-1-119-07310-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119073208</subfield><subfield code="9">978-1-119-07320-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn945582928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)965787109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043864321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381/325</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jarry, Pierre</subfield><subfield code="d">1946-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microwave amplifier and active circuit design using the real frequency technique</subfield><subfield code="c">Pierre Jarry and Jacques N. Beneat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 273 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">-- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg-Marquardt-More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - 2.10 Realizations 59</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2-8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15-1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15-1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925-6.425 GHz Hybrid Amplifier 96 -- References 99 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - 6.2 Multistage Power Amplifier Representation 152</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg-Marquardt-More Optimization Algorithm 239 -- </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a"> - Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"--</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Microwaves</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electric filters, Active / Design and construction</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microwave amplifiers / Design and construction</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Mechanical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave amplifiers / Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric filters, Active / Design and construction</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochfrequenz</subfield><subfield code="0">(DE-588)4160130-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gigahertzbereich</subfield><subfield code="0">(DE-588)4379233-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetismus</subfield><subfield code="0">(DE-588)4014306-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektromagnetismus</subfield><subfield code="0">(DE-588)4014306-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hochfrequenz</subfield><subfield code="0">(DE-588)4160130-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gigahertzbereich</subfield><subfield code="0">(DE-588)4379233-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beneat, Jacques</subfield><subfield code="d">1964-</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-118-98508-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029274355</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043864321 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:47:09Z |
institution | BVB |
isbn | 111907309X 1119073103 1119073200 9781119073093 9781119073109 9781119073208 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029274355 |
oclc_num | 945582928 965787109 |
open_access_boolean | |
owner | DE-861 |
owner_facet | DE-861 |
physical | 1 online resource (xii, 273 pages) |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
spelling | Jarry, Pierre 1946- aut Microwave amplifier and active circuit design using the real frequency technique Pierre Jarry and Jacques N. Beneat Hoboken John Wiley & Sons, Inc. 2016 1 online resource (xii, 273 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index -- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- - 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg-Marquardt-More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- - 2.10 Realizations 59 2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2-8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15-1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15-1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925-6.425 GHz Hybrid Amplifier 96 -- References 99 -- - 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- - 6.2 Multistage Power Amplifier Representation 152 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- - 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg-Marquardt-More Optimization Algorithm 239 -- - Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253 "The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"-- TECHNOLOGY & ENGINEERING / Microwaves bisacsh Electric filters, Active / Design and construction fast Microwave amplifiers / Design and construction fast TECHNOLOGY & ENGINEERING / Mechanical bisacsh Microwave amplifiers / Design and construction Electric filters, Active / Design and construction Elektromagnetisches Feld (DE-588)4014305-3 gnd rswk-swf Hochfrequenz (DE-588)4160130-0 gnd rswk-swf Gigahertzbereich (DE-588)4379233-9 gnd rswk-swf Elektromagnetismus (DE-588)4014306-5 gnd rswk-swf Elektromagnetisches Feld (DE-588)4014305-3 s Elektromagnetismus (DE-588)4014306-5 s Hochfrequenz (DE-588)4160130-0 s Gigahertzbereich (DE-588)4379233-9 s DE-604 Beneat, Jacques 1964- aut Erscheint auch als Druckausgabe 978-1-118-98508-3 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Jarry, Pierre 1946- Beneat, Jacques 1964- Microwave amplifier and active circuit design using the real frequency technique Includes bibliographical references and index -- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- - 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg-Marquardt-More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- - 2.10 Realizations 59 2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2-8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15-1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15-1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925-6.425 GHz Hybrid Amplifier 96 -- References 99 -- - 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- - 6.2 Multistage Power Amplifier Representation 152 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- - 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg-Marquardt-More Optimization Algorithm 239 -- - Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253 TECHNOLOGY & ENGINEERING / Microwaves bisacsh Electric filters, Active / Design and construction fast Microwave amplifiers / Design and construction fast TECHNOLOGY & ENGINEERING / Mechanical bisacsh Microwave amplifiers / Design and construction Electric filters, Active / Design and construction Elektromagnetisches Feld (DE-588)4014305-3 gnd Hochfrequenz (DE-588)4160130-0 gnd Gigahertzbereich (DE-588)4379233-9 gnd Elektromagnetismus (DE-588)4014306-5 gnd |
subject_GND | (DE-588)4014305-3 (DE-588)4160130-0 (DE-588)4379233-9 (DE-588)4014306-5 |
title | Microwave amplifier and active circuit design using the real frequency technique |
title_auth | Microwave amplifier and active circuit design using the real frequency technique |
title_exact_search | Microwave amplifier and active circuit design using the real frequency technique |
title_full | Microwave amplifier and active circuit design using the real frequency technique Pierre Jarry and Jacques N. Beneat |
title_fullStr | Microwave amplifier and active circuit design using the real frequency technique Pierre Jarry and Jacques N. Beneat |
title_full_unstemmed | Microwave amplifier and active circuit design using the real frequency technique Pierre Jarry and Jacques N. Beneat |
title_short | Microwave amplifier and active circuit design using the real frequency technique |
title_sort | microwave amplifier and active circuit design using the real frequency technique |
topic | TECHNOLOGY & ENGINEERING / Microwaves bisacsh Electric filters, Active / Design and construction fast Microwave amplifiers / Design and construction fast TECHNOLOGY & ENGINEERING / Mechanical bisacsh Microwave amplifiers / Design and construction Electric filters, Active / Design and construction Elektromagnetisches Feld (DE-588)4014305-3 gnd Hochfrequenz (DE-588)4160130-0 gnd Gigahertzbereich (DE-588)4379233-9 gnd Elektromagnetismus (DE-588)4014306-5 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Microwaves Electric filters, Active / Design and construction Microwave amplifiers / Design and construction TECHNOLOGY & ENGINEERING / Mechanical Elektromagnetisches Feld Hochfrequenz Gigahertzbereich Elektromagnetismus |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119073093 |
work_keys_str_mv | AT jarrypierre microwaveamplifierandactivecircuitdesignusingtherealfrequencytechnique AT beneatjacques microwaveamplifierandactivecircuitdesignusingtherealfrequencytechnique |