Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Search and optimization by met...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Du, Ke-Lin (VerfasserIn), Swamy, M. N. S. 1935- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: [Basel] Birkhäuser [2016]
Schlagwörter:
Mathematics
Computer simulation
Algorithms
Computer mathematics
Mathematical optimization
Computational intelligence
Computational Science and Engineering
Optimization
Simulation and Modeling
Computational Intelligence
Mathematik
Links:https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029118869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:1 Online-Ressource (XXI, 434 Seiten, 68 illus., 40 illus. in color)
ISBN:9783319411927
DOI:10.1007/978-3-319-41192-7
Internformat

MARC

LEADER 00000nam a2200000zc 4500
001 BV043706556
003 DE-604
005 20240910
007 cr|uuu---uuuuu
008 160809s2016 xx o|||| 00||| eng d
020 |a 9783319411927  |c Online  |9 978-3-319-41192-7 
024 7 |a 10.1007/978-3-319-41192-7  |2 doi 
035 |a (ZDB-2-SMA)9783319411927 
035 |a (OCoLC)955034705 
035 |a (DE-599)BVBBV043706556 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-20  |a DE-739  |a DE-634  |a DE-898  |a DE-861  |a DE-703  |a DE-824  |a DE-83  |a DE-706 
082 0 |a 004  |2 23 
084 |a QH 400  |0 (DE-625)141571:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Du, Ke-Lin  |e Verfasser  |4 aut 
245 1 0 |a Search and optimization by metaheuristics  |b techniques and algorithms inspired by nature  |c Ke-Lin Du, M.N.S. Swamy 
264 1 |a [Basel]  |b Birkhäuser  |c [2016] 
300 |a 1 Online-Ressource (XXI, 434 Seiten, 68 illus., 40 illus. in color) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
650 4 |a Mathematics 
650 4 |a Computer simulation 
650 4 |a Algorithms 
650 4 |a Computer mathematics 
650 4 |a Mathematical optimization 
650 4 |a Computational intelligence 
650 4 |a Computational Science and Engineering 
650 4 |a Optimization 
650 4 |a Simulation and Modeling 
650 4 |a Computational Intelligence 
650 4 |a Mathematik 
700 1 |a Swamy, M. N. S.  |d 1935-  |e Verfasser  |0 (DE-588)125008570  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-41191-0 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-3-319-41191-0 
856 4 0 |u https://doi.org/10.1007/978-3-319-41192-7  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029118869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2016 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029118869 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-706  |p ZDB-2-SMA  |q UBY01_Einzelkauf24  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-41192-7  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-OTHR_katkey 5777024
DE-BY-TUM_katkey 2226950
_version_ 1831257101032226816
adam_text Titel: Search and optimization by metaheuristics Autor: Du, Ke-Lin Jahr: 2016 Contents 1 Introduction................................................................................1 1.1 Computation Inspired by Nature..........................................1 1.2 Biological Processes..........................................................3 1.3 Evolution Versus Learning..................................................5 1.4 Swarm Intelligence............................................................6 1.4.1 Group Behaviors....................................................7 1.4.2 Foraging Theory....................................................8 1.5 Heuristics, Metaheuristics, and Hyper-Heuristics....................9 1.6 Optimization......................................................................11 1.6.1 Lagrange Multiplier Method....................................12 1.6.2 Direction-Based Search and Simplex Search..............13 1.6.3 Discrete Optimization Problems..............................14 1.6.4 P, NP, NP-Hard, and NP-Complete..........................16 1.6.5 Multiobjective Optimization Problem........................17 1.6.6 Robust Optimization..............................................19 1.7 Performance Indicators........................................................20 1.8 No Free Lunch Theorem....................................................22 1.9 Outline of the Book............................................................23 References....................................................................................25 2 Simulated Annealing....................................................................29 2.1 Introduction......................................................................29 2.2 Basic Simulated Annealing..................................................30 2.3 Variants of Simulated Annealing..........................................33 References....................................................................................35 3 Genetic Algorithms......................................................................37 3.1 Introduction to Evolutionary Computation.............. 37 3.1.1 Evolutionary Algorithms Versus Simulated Annealing............................................................39 3.2 Terminologies of Evolutionary Computation..........................39 3.3 Encoding/Decoding............................................................42 3.4 Selection/Reproduction............................ 43 3.5 Crossover..........................................................................46 xi Xii Contents 3.6 Mutation..........................................................................48 3.7 Noncanonical Genetic Operators..........................................49 3.8 Exploitation Versus Exploration..........................................51 3.9 Two-Dimensional Genetic Algorithms..................................55 3.10 Real-Coded Genetic Algorithms..........................................56 3.11 Genetic Algorithms for Sequence Optimization......................60 References....................................................................................64 4 Genetic Programming..................................................................71 4.1 Introduction......................................................................71 4.2 Syntax Trees......................................................................72 4.3 Causes of Bloat..................................................................75 4.4 Bloat Control....................................................................76 4.4.1 Limiting on Program Size......................................77 4.4.2 Penalizing the Fitness of an Individual with Large Size......................................................77 4.4.3 Designing Genetic Operators..................................77 4.5 Gene Expression Programming............................................78 References....................................................................................80 5 Evolutionary Strategies................................................................83 5.1 Introduction......................................................................83 5.2 Basic Algorithm................................................................84 5.3 Evolutionary Gradient Search and Gradient Evolution............85 5.4 CMA Evolutionary Strategies..............................................88 References....................................................................................90 6 Differential Evolution..................................................................93 6.1 Introduction......................................................................93 6.2 DE Algorithm....................................................................94 6.3 Variants of DE..................................................................97 6.4 Binary DE Algorithms........................................................100 6.5 Theoretical Analysis on DE................................................100 References....................................................................................101 7 Estimation of Distribution Algorithms..........................................105 7.1 Introduction......................................................................105 7.2 EDA Flowchart..................................................................107 7.3 Population-Based Incremental Learning................................108 7.4 Compact Genetic Algorithms..............................................110 7.5 Bayesian Optimization Algorithm........................................112 7.6 Concergence Properties......................................................112 7.7 Other ED As......................................................................113 7.7.1 Probabilistic Model Building GP..............................115 References....................................................................................116 Contents xiii 8 Topics in Evolutinary Algorithms................................................121 8.1 Convergence of Evolutinary Algorithms................................121 8.1.1 Schema Theorem and Building-Block Hypothesis . . . 121 8.1.2 Finite and Infinite Population Models......................123 8.2 Random Problems and Deceptive Functions..........................125 8.3 Parallel Evolutionary Algorithms..........................................127 8.3.1 Master-Slave Model..............................................129 8.3.2 Island Model........................................................130 8.3.3 Cellular EAs..........................................................132 8.3.4 Cooperative Coevolution........................................133 8.3.5 Cloud Computing..................................................134 8.3.6 GPU Computing....................................................135 8.4 Coevolution......................................................................136 8.4.1 Coevolutionary Approaches....................................137 8.4.2 Coevolutionary Approach for Minimax Optimization..........................................................138 8.5 Interactive Evolutionary Computation..................................139 8.6 Fitness Approximation........................................................139 8.7 Other Heredity-Based Algorithms........................................141 8.8 Application: Optimizating Neural Networks..........................142 References....................................................................................146 9 Particle Swarm Optimization........................................................153 9.1 Introduction......................................................................153 9.2 Basic PSO Algorithms........................................................154 9.2.1 Bare-Bones PSO....................................................156 9.2.2 PSO Variants Using Gaussian or Cauchy Distribution..........................................................157 9.2.3 Stability Analysis of PSO........................................157 9.3 PSO Variants Using Different Neighborhood Topologies .... 159 9.4 Other PSO Variants............................................................160 9.5 PSO and EAs: Hybridization..............................................164 9.6 Discrete PSO....................................................................165 9.7 Multi-swarm PSOs............................................................166 References....................................................................................169 10 Artificial Immune Systems..........................................................175 10.1 Introduction......................................................................175 10.2 Immunological Theories......................................................177 10.3 Immune Algorithms............................................................180 10.3.1 Clonal Selection Algorithm....................................180 10.3.2 Artificial Immune Network......................................184 10.3.3 Negative Selection Algorithm..................................185 10.3.4 Dendritic Cell Algorithm........................................186 References....................................................................................187 Contents 11 Ant Colony Optimization 191 11.1 Introduction 191 11.2 Ant-Colony Optimization 192 11.2.1 Basic ACO Algorithm 194 11.2.2 ACO for Continuous Optimization 195 References 198 12 Bee Metaheuristics 201 12.1 Introduction 201 12.2 Artificial Bee Colony Algorithm 203 12.2.1 Algorithm Flowchart 203 12.2.2 Modifications on ABC Algorithm 207 12.2.3 Discrete ABC Algorithms 208 12.3 Marriage in Honeybees Optimization 209 12.4 Bee Colony Optimization 210 12.5 Other Bee Algorithms 211 12.5.1 Wasp Swarm Optimization 212 References 213 13 Bacterial Foraging Algorithm 217 13.1 Introduction 217 13.2 Bacterial Foraging Algorithm 219 13.3 Algorithms Inspired by Molds, Algae, and Tumor Cells 222 References 224 14 Harmony Search 227 14.1 Introduction 227 14.2 Harmony Search Algorithm 228 14.3 Variants of Harmony Search 230 14.4 Melody Search 233 References 234 15 Swarm Intelligence 237 15.1 Glowworm-Based Optimization 237 15.1.1 Glowworm Swarm Optimization 238 15.1.2 Firefly Algorithm 239 15.2 Group Search Optimization 240 15.3 Shuffled Frog Leaping 241 15.4 Collective Animal Search 242 15.5 Cuckoo Search 243 15.6 Bat Algorithm 246 15.7 Swarm Intelligence Inspired by Animal Behaviors 247 15.7.1 Social Spider Optimization 247 15.7.2 Fish Swarm Optimization 249 15.7.3 Krill Herd Algorithm 250 15.7.4 Cockroach-Based Optimization 251 15.7.5 Seven-Spot Ladybird Optimization 252 Contents xv 15.7.6 Monkey-Inspired Optimization................................252 15.7.7 Migrating-Based Algorithms....................................253 15.7.8 Other Methods......................................................254 15.8 Plant-Based Metaheuristics..................................................255 15.9 Other Swarm Intelligence-Based Metaheuristics......................257 References....................................................................................259 16 Biomolecular Computing..............................................................265 16.1 Introduction......................................................................265 16.1.1 Biochemical Networks............................................267 16.2 DNA Computing................................................................268 16.2.1 DNA Data Embedding............................................271 16.3 Membrane Computing........................................................271 16.3.1 Cell-Like P System................................................272 16.3.2 Computing by P System........................................273 16.3.3 Other P Systems....................................................275 16.3.4 Membrane-Based Optimization................................277 References....................................................................................278 17 Quantum Computing..................................................................283 17.1 Introduction......................................................................283 17.2 Fundamentals....................................................................284 17.2.1 Graver s Search Algorithm......................................286 17.3 Hybrid Methods................................................................287 17.3.1 Quantum-Inspired EAs............................................287 17.3.2 Other Quantum-Inspired Hybrid Algorithms..............290 References....................................................................................291 18 Metaheuristics Based on Sciences................................................295 18.1 Search Based on Newton s Laws..........................................295 18.2 Search Based on Electromagnetic Laws................................297 18.3 Search Based on Thermal-Energy Principles..........................298 18.4 Search Based on Natural Phenomena....................................299 18.4.1 Search Based on Water Flows................................299 18.4.2 Search Based on Cosmology..................................301 18.4.3 Black Hole-Based Optimization..............................302 18.5 Sorting..............................................................................303 18.6 Algorithmic Chemistries......................................................304 18.6.1 Chemical Reaction Optimization..............................304 18.7 Biogeography-Based Optimization........................................306 18.8 Methods Based on Mathematical Concepts............................309 18.8.1 Opposition-Based Learning......................................310 References....................................................................................311 19 Memetic Algorithms....................................................................315 19.1 Introduction......................................................................315 19.2 Cultural Algorithms............................................................316 Contents 19.3 Memetic Algorithms..........................................................318 19.3.1 Simplex-based Memetic Algorithms..........................320 19.4 Application: Searching Low Autocorrelation Sequences..........321 References....................................................................................324 20 Tabu Search and Scatter Search..................................................327 20.1 Tabu Search......................................................................327 20.1.1 Iterative Tabu Search..............................................330 20.2 Scatter Search....................................................................331 20.3 Path Relinking..................................................................333 References....................................................................................335 21 Search Based on Human Behaviors..............................................337 21.1 Seeker Optimization Algorithm............................................337 21.2 Teaching-Learning-Based Optimization................................338 21.3 Imperialist Competitive Algorithm........................................340 21.4 Several Metaheuristics Inspired by Human Behaviors............342 References....................................................................................345 22 Dynamic, Multimodal, and Constrained Optimizations..................347 22.1 Dynamic Optimization........................................................347 22.1.1 Memory Scheme....................................................348 22.1.2 Diversity Maintaining or Reinforcing........................348 22.1.3 Multiple Population Scheme....................................349 22.2 Multimodal Optimization....................................................350 22.2.1 Crowding and Restricted Tournament Selection .... 351 22.2.2 Fitness Sharing......................................................353 22.2.3 Speciation............................................................354 22.2.4 Clearing, Local Selection, and Demes......................356 22.2.5 Other Methods......................................................357 22.2.6 Metrics for Multimodal Optimization........................359 22.3 Constrained Optimization....................................................359 22.3.1 Penalty Function Method........................................360 22.3.2 Using Multiobjective Optimization Techniques..........363 References....................................................................................365 23 Multiobjective Optimization........................................................371 23.1 Introduction......................................................................371 23.2 Multiobjective Evolutionary Algorithms................................373 23.2.1 Nondominated Sorting Genetic Algorithm II..............374 23.2.2 Strength Pareto Evolutionary Algorithm 2................377 23.2.3 Pareto Archived Evolution Strategy (PAES)..............378 23.2.4 Pareto Envelope-Based Selection Algorithm..............379 23.2.5 MOEA Based on Decomposition (MOEA/D)............380 23.2.6 Several MOEAs....................................................381 Contents _____ __________ ________ ____ xvii 23.2.7 Nondominated Sorting............................................384 23.2.8 Multiobjective Optimization Based on Differential Evolution..............................385 23.3 Performance Metrics..........................................................386 23.4 Many-Objective Optimization..............................................389 23.4.1 Challenges in Many-Objective Optimization..............389 23.4.2 Pareto-Based Algorithms........................................391 23.4.3 Decomposition-Based Algorithms............................393 23.5 Multiobjective Immune Algorithms......................................394 23.6 Multiobjective PSO............................................................395 23.7 Multiobjective EDAs..........................................................398 23.8 Tabu/Scatter Search Based Multiobjective Optimization..........399 23.9 Other Methods..................................................................400 23.10 Coevolutionary MOEAs......................................................402 References....................................................................................403 Appendix A: Benchmarks..................................................................413 Index................................................................................................431
any_adam_object 1
author Du, Ke-Lin
Swamy, M. N. S. 1935-
author_GND (DE-588)125008570
author_facet Du, Ke-Lin
Swamy, M. N. S. 1935-
author_role aut
aut
author_sort Du, Ke-Lin
author_variant k l d kld
m n s s mns mnss
building Verbundindex
bvnumber BV043706556
classification_rvk QH 400
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783319411927
(OCoLC)955034705
(DE-599)BVBBV043706556
dewey-full 004
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 004 - Computer science
dewey-raw 004
dewey-search 004
dewey-sort 14
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Mathematik
Wirtschaftswissenschaften
doi_str_mv 10.1007/978-3-319-41192-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03084nam a2200649zc 4500</leader><controlfield tag="001">BV043706556</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240910 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160809s2016 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319411927</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-41192-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-41192-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319411927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)955034705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043706556</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Ke-Lin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Search and optimization by metaheuristics</subfield><subfield code="b">techniques and algorithms inspired by nature</subfield><subfield code="c">Ke-Lin Du, M.N.S. Swamy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Basel]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 434 Seiten, 68 illus., 40 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation and Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swamy, M. N. S.</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)125008570</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-41191-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-41191-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029118869&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029118869</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="q">UBY01_Einzelkauf24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-41192-7</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043706556
illustrated Not Illustrated
indexdate 2024-12-20T17:43:09Z
institution BVB
isbn 9783319411927
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029118869
oclc_num 955034705
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-739
DE-634
DE-898
DE-BY-UBR
DE-861
DE-703
DE-824
DE-83
DE-706
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-739
DE-634
DE-898
DE-BY-UBR
DE-861
DE-703
DE-824
DE-83
DE-706
physical 1 Online-Ressource (XXI, 434 Seiten, 68 illus., 40 illus. in color)
psigel ZDB-2-SMA
ZDB-2-SMA_2016
ZDB-2-SMA UBY01_Einzelkauf24
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Birkhäuser
record_format marc
spellingShingle Du, Ke-Lin
Swamy, M. N. S. 1935-
Search and optimization by metaheuristics techniques and algorithms inspired by nature
Mathematics
Computer simulation
Algorithms
Computer mathematics
Mathematical optimization
Computational intelligence
Computational Science and Engineering
Optimization
Simulation and Modeling
Computational Intelligence
Mathematik
title Search and optimization by metaheuristics techniques and algorithms inspired by nature
title_auth Search and optimization by metaheuristics techniques and algorithms inspired by nature
title_exact_search Search and optimization by metaheuristics techniques and algorithms inspired by nature
title_full Search and optimization by metaheuristics techniques and algorithms inspired by nature Ke-Lin Du, M.N.S. Swamy
title_fullStr Search and optimization by metaheuristics techniques and algorithms inspired by nature Ke-Lin Du, M.N.S. Swamy
title_full_unstemmed Search and optimization by metaheuristics techniques and algorithms inspired by nature Ke-Lin Du, M.N.S. Swamy
title_short Search and optimization by metaheuristics
title_sort search and optimization by metaheuristics techniques and algorithms inspired by nature
title_sub techniques and algorithms inspired by nature
topic Mathematics
Computer simulation
Algorithms
Computer mathematics
Mathematical optimization
Computational intelligence
Computational Science and Engineering
Optimization
Simulation and Modeling
Computational Intelligence
Mathematik
topic_facet Mathematics
Computer simulation
Algorithms
Computer mathematics
Mathematical optimization
Computational intelligence
Computational Science and Engineering
Optimization
Simulation and Modeling
Computational Intelligence
Mathematik
url https://doi.org/10.1007/978-3-319-41192-7
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029118869&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT dukelin searchandoptimizationbymetaheuristicstechniquesandalgorithmsinspiredbynature
AT swamymns searchandoptimizationbymetaheuristicstechniquesandalgorithmsinspiredbynature
  • Verfügbarkeit
Bestellen (Login erforderlich)
Online lesen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt